Main Content
Lindsey-Kay Lauderdale
Lindsey-Kay Lauderdale, Assistant Professor
Assistant Professor; Ph.D. in Mathematics, University of Florida
Research Interests
Algebraic graph theory, enumerative combinatorics, extremal graph theory, group theory, and their applications.
Neckers 277
618-453-6573
lindseykay.lauderdale@siu.edu
Publications
1. Chapter 15: Ring Theory. Mathematics in Cyber Research. Edited By P. L. Goethals, N. M. Scala, and D. T. Bennett. Chapman and Hall/CRC, 2022. ISBN 9780367374679.
2. Density results for Graovac-Pisanski's distance number (with L. Abrams). Ars Math. Contemp., 21(2), 1--15, 2021.
3. Vertex-minimal graphs with nonabelian 2-group symmetry (with J. Zimmerman). J. Algebraic Combin., 54, 205--221, 2021.
4. Vertex-minimal planar graphs with cyclic 2-group symmetry (with K. Archer, R. Darby, A. Linson, M. K. Maxfield, C. Schmidt, and P. T. Tran). J. Algebraic Combin., 54, 1--15, 2021.
5. Vertex-minimal planar graphs with prescribed automorphism group (with C. J. Jones, S. E. Lubow, and C. J. Triplitt). J. Algebraic Combin., 53, 355--367, 2021.
6. Enumeration of cyclic permutations in vector grid classes (with K. Archer). J. Comb., 11(1), 203--230, 2020.
7. Vertex-minimal graphs with dihedral symmetry II (with C. Graves). Discrete Math., 342(5), 1378--1391, 2019.
8. On the fixing sets of dihedral groups. Discrete Math., 342(2), 520--528, 2019.
9. On the number of lambda-unimodal involutions (with K. Archer, A. Gay, C. M. King, T. Lupo, V. Germany, and F. L. Rossi). Sem. Lothar. Combin., 80B, Article #66, 12pp., 2018.
10. Smallest graphs with given generalized quaternion automorphism group (with C. Graves and S. Graves). J.Graph Theory, 87(4), 430--442, 2018.
11. Unimodal permutations and almost-increasing cycles (with K. Archer). Electron. J Combin., 24(3), #P3.36, 2017.
12. Vertex-minimal graphs with dihedral symmetry I (with C. Graves and S. Graves). Discrete Math., 340, 2573--2588, 2017.
13. On the number of maximal subgroups in a finite group. J. Group Theory, 18(4), 535--551, 2015.
14. Lower bounds on the number of maximal subgroups in a finite group. Arch. Math., 101(1), 9--15, 2013.