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R-GROUPS AND PARAMETERS

DUBRAVKA BAN AND DAVID GOLDBERG

Let G be a p-adic group, SO2n+1, Sp2n, O2n or Un. Let π be an irreducible
discrete series representation of a Levi subgroup of G. We prove the con-
jecture that the Knapp–Stein R-group of π and the Arthur R-group of π
are isomorphic. Several instances of the conjecture were established earlier:
for archimedean groups by Shelstad; for principal series representations by
Keys; for G = SO2n+1 by Ban and Zhang; and for G = SOn or Sp2n in the
case when π is supercuspidal, under an assumption on the parameter, by
Goldberg.

1. Introduction

Central to representation theory of reductive groups over local fields is the study
of parabolically induced representations. In order to classify the tempered spec-
trum of such a group, one must understand the structure of parabolically induced
from discrete series representations, in terms of components, multiplicities, and
whether or not components are elliptic. The Knapp–Stein R-group gives an ex-
plicit combinatorial method for conducting this study. On the other hand, the local
Langlands conjecture predicts the parametrization of such nondiscrete tempered
representations, in L-packets, by admissible homomorphisms of the Weil–Deligne
group which factor through a Levi component of the Langlands dual group. Arthur
[1989] gave a conjectural description of the Knapp–Stein R-group in terms of the
parameter. This conjecture generalizes results of Shelstad [1982] for archimedean
groups, as well as those of Keys [1987] in the case of unitary principal series of
certain p-adic groups. In [Ban and Zhang 2005] this conjecture was established
for odd special orthogonal groups. In [Goldberg 2011] the conjecture was estab-
lished for induced from supercuspidal representations of split special orthogonal
or symplectic groups, under an assumption on the parameter. In the current work,
we complete the conjecture for the full tempered spectrum of all these groups.
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102 DUBRAVKA BAN AND DAVID GOLDBERG

Let F be a nonarchimedean local field of characteristic zero. We denote by G a
connected reductive quasi-split algebraic group defined over F . We let G = G(F),
and use similar notation for other groups defined over F . Fix a maximal torus T of
G, and a Borel subgroup B = TU containing T . We let E(G) be the equivalence
classes of irreducible admissible representations of G, Et(G) the tempered classes,
E2(G) the discrete series, and ◦E(G) the irreducible unitary supercuspidal classes.
We make no distinction between a representation π and its equivalence class.

Let P = M N be a standard, with respect to B, parabolic subgroup of G. Let
A= AM be the split component of M, and let W =W (G, A)= NG(A)/M be the
Weyl group for this situation. For σ ∈ E(M) we let IndG

P (σ ) be the representation
unitarily induced from σ ⊗ 1N . Thus, if V is the space of σ , we let

V (σ )=
{

f ∈C∞(G, V ) | f (mng)= δP(m)1/2 f (g) for all m ∈M, n ∈ N , g ∈G
}
,

with δP the modulus character of P . The action of G is by the right regular rep-
resentation, so (IndG

P (σ )(x) f )(g)= f (gx). Then any π ∈ Et(G) is an irreducible
component of IndG

P (σ ) for some choice of M and σ ∈ E2(M). In order to deter-
mine the component structure of IndG

P (σ ), Knapp and Stein, in the archimedean
case, and Harish-Chandra in the p-adic case, developed the theory of singular
integral intertwining operators, leading to the theory of R-groups, due to Knapp
and Stein [1971] in the archimedean case and Silberger [1978; 1979] in the p-adic
case. We describe this briefly and refer the reader to the introduction of [Goldberg
1994] for more details. The poles of the intertwining operators give rise to the
zeros of Plancherel measures. Let 8(P, A) be the reduced roots of A in P . For
α ∈ 8(P, A) and σ ∈ E2(M) we let µα(σ ) be the rank one Plancherel measure
associated to σ and α. We let 1′ = {α ∈ 8(P, A) |µα(σ ) = 0}. For w ∈ W and
σ ∈ E2(M) we let wσ(m) = σ(w−1mσ). (Note, we make no distinction between
w ∈W and its representative in NG(A).) We let

W (σ )= {w ∈W |wσ ' σ },

and let W ′ be the subgroup of W (σ ) generated by those wα with α ∈ 1′. We let
R(σ ) = {w ∈ W (σ ) | w1′ = 1′} = {w ∈ W (σ ) | wα > 0 for all α ∈ 1′}. Let
C(σ )= EndG(IndG

P (σ )).

Theorem 1 [Knapp and Stein 1971; Silberger 1978; 1979]. For any σ ∈ E2(M),
we have W (σ ) = R(σ )nW ′, and C(σ ) ' C[R(σ )]η, the group algebra of R(σ )
twisted by a certain 2-cocycle η.

Thus R(σ ), along with η, determines how many inequivalent components appear
in IndG

P (σ ) and the multiplicity with which each one appears. Furthermore Arthur
shows C[R(σ )]η also determines whether or not components of IndG

P (σ ) are elliptic
(and hence whether or not they contribute to the Plancherel formula) [Arthur 1993].
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R-GROUPS AND PARAMETERS 103

Arthur [1989] conjectured a construction of R(σ ) in terms of the local Langlands
conjecture. Let WF be the Weil group of F and W ′F = WF × SL2(C) the Weil–
Deligne group. Suppose ψ : W ′F →

L M parametrizes the L-packet, 5ψ(M), of
M containing σ . Here L M = M̂ oWF is the Langlands L-group, and M̂ is the
complex group whose root datum is dual to that of M. Then

ψ :W ′F →
L M ↪→ L G

must be a parameter for an L-packet 5ψ(G) of G. The expectation is that 5ψ(G)
consists of all irreducible components of IndG

P (σ
′) for all σ ′ ∈ 5ψ(M). We let

Sψ = ZĜ(Imψ), and take S◦ψ to be the connected component of the identity. Let
Tψ be a maximal torus in S◦ψ . Set Wψ = W (Sψ , Tψ), and W ◦ψ = W (S◦ψ , Tψ).
Then Rψ = Wψ/W ◦ψ is called the R-group of the packet 5ψ(G). By duality we
can identify Wψ with a subgroup of W . With this identification, we let Wψ,σ =

Wψ ∩W (σ ) and W ◦ψ,σ =W ◦ψ ∩W (σ ). We then set

Rψ,σ =Wψ,σ/W ◦ψ,σ .

We call Rψ,σ the Arthur R-group attached to ψ and σ .

Conjecture 2. For any σ ∈ E2(M), we have R(σ )' Rψ,σ .

In [Ban and Zhang 2005], the first named author and Zhang proved this con-
jecture in the case G = SO2n+1. In [Goldberg 2011] the second named author
confirmed the conjecture when σ is supercuspidal, and G = SOn or Sp2n , with a
mild assumption on the parameterψ . Here, we complete the proof of the conjecture
for Sp2n , or On , under assumptions given in Section 2.3.

This work is based on the classification of discrete series for classical p-adic
groups of Mœglin and Tadić [2002], and on the results of Mœglin [2002; 2007b].
Subsequent to our submission, Arthur’s unfinished book has become available in
preprint form [Arthur 2011]. In this long awaited and impressive work, he uses
the trace formula to classify the automorphic representations of special orthogonal
and symplectic groups in terms of those of GL(n). An important ingredient in
this work is a formulation of the classification at the local places. The results for
irreducible tempered representations are obtained from the classification of discrete
series using R-groups. Our result on isomorphism of R-groups and their dual
version for SO(2n+1, F) and Sp(2n, F) (see Theorem 7) also appear in Arthur’s
work [2011, page 346]. Arthur’s proof differs significantly from the one we use
here. We work with a rather concrete description of parameters based on Jordan
blocks and L-functions, while Arthur works in the general context of his theory.

We now describe the contents of the paper in more detail. In Section 2 we
introduce our notation and discuss the classification of E2(M) for our groups, due to
Mœglin and Tadić, as well as preliminaries on Knapp–Stein and Arthur R-groups.
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104 DUBRAVKA BAN AND DAVID GOLDBERG

In Section 3 we consider the parameters ψ and compute their centralizers. In
Section 4 we turn to the case of G=O2n . Here we show the Arthur R-group agrees
with the generalization of the Knapp–Stein R-group as discussed in [Goldberg and
Herb 1997]. In Section 5 we complete the proof of the theorem for the induced
from discrete series representations of Sp2n,SO2n+1, or O2n .

In Section 6, we study R-groups for unitary groups. These groups are interesting
for us because they are not split and the action of the Weil group on the dual group
is nontrivial. In addition, the classification of discrete series and description of
L-parameters is completed [Mœglin 2007b].

The techniques used here can be used for other groups. In particular we should
be able to carry out this process for similitude groups and G2. Furthermore, the
techniques of computing the Arthur R-groups will apply to GSpin groups, as well,
and may shed light on the Knapp–Stein R-groups in this case. We leave all of this
for future work.

2. Preliminaries

2.1. Notation. Let F be a nonarchimedean local field of characteristic zero. Let
Gn , n ∈ Z+, be Sp(2n, F), SO(2n+ 1, F) or SO(2n, F). We define G0 to be the
trivial group. For G = Gn or G = GL(n, F), fix the minimal parabolic subgroup
consisting of all upper triangular matrices in G and the maximal torus consisting
of all diagonal matrices in G. If δ1, δ2 are smooth representations of GL(m, F),
GL(n, F), respectively, we define

δ1× δ2 = IndG
P (δ1⊗ δ2)

where G = GL(m + n, F) and P = MU is the standard parabolic subgroup of G
with Levi factor M ∼=GL(m, F)×GL(n, F). Similarly, if δ is a smooth represen-
tation of GL(m, F) and σ is a smooth representation of Gn , we define

δo σ = IndGm+n
P (δ⊗ σ)

where P =MU is the standard parabolic subgroup of Gm+n with Levi factor M ∼=
GL(m, F)×Gn . We denote by E2(G) the set of equivalence classes of irreducible
square integrable representations of G and by 0E(G) the set of equivalence classes
of irreducible unitary supercuspidal representations of G.

We say that a homomorphism h : X → GL(d,C) is symplectic (respectively,
orthogonal) if h fixes an alternating form (respectively, a symmetric form) on
GL(d,C). We denote by Sa the standard a-dimensional irreducible algebraic rep-
resentation of SL(2,C). Then

(1) Sa is
{

orthogonal for a odd,
symplectic for a even.
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R-GROUPS AND PARAMETERS 105

Let ρ be an irreducible supercuspidal unitary representation of GL(d, F). Ac-
cording to the local Langlands correspondence for GLd [Harris and Taylor 2001;
Henniart 2000], attached to ρ is an L-parameter ϕ : WF → GL(d,C). Suppose
ρ∼= ρ̃. Then ϕ∼= ϕ̃ and one of the Artin L-functions L(s,Sym2ϕ) or L(s,

∧2
ϕ) has

a pole. The L-function L(s,Sym2ϕ) has a pole if and only if ϕ is orthogonal. The
L-function L(s,

∧2
ϕ) has a pole if and only if ϕ is symplectic. From [Henniart

2010] we know

(2) L(s,
∧2
ϕ)= L(s, ρ,

∧2
), and L(s,Sym2ϕ)= L(s, ρ,Sym2),

where L(s, ρ,
∧2
) and L(s, ρ,Sym2) are the Langlands L-functions as defined in

[Shahidi 1981].
Let ρ be an irreducible supercuspidal unitary representation of GL(d, F) and

a ∈ Z+. We define δ(ρ, a) to be the unique irreducible subrepresentation of

ρ‖(a−1)/2
× ρ‖(a−3)/2

× · · ·× ρ‖(−(a−1))/2
;

see [Zelevinsky 1980].

2.2. Jordan blocks. We now review the definition of Jordan blocks from [Mœglin
and Tadić 2002]. Let G be Sp(2n, F), SO(2n+1, F) or O(2n, F). For d ∈N, let
rd denote the standard representation of GL(d,C). Define

Rd =

{∧2rd for G = Sp(2n, F), O(2n, F),
Sym2rd for G = SO(2n+ 1, F).

Let σ be an irreducible discrete series representation of Gn . Denote by Jord(σ )
the set of pairs (ρ, a), where ρ ∈ 0E(GL(dρ, F)), ρ ∼= ρ̃, and a ∈ Z+, such that

(J-1) a is even if L(s, ρ, Rdρ ) has a pole at s = 0 and odd otherwise,

(J-2) δ(ρ, a)o σ is irreducible.

For ρ ∈ 0E(GL(dρ, F)), ρ ∼= ρ̃, define

Jordρ(σ )= {a | (ρ, a) ∈ Jord(σ )}.

Let Ĝ denote the complex dual group of G. Then Ĝ = SO(2n + 1,C) for
G = Sp(2n, F), Ĝ = Sp(2n,C) for G = SO(2n + 1, F) and Ĝ = O(2n,C) for
G = O(2n, F).

Lemma 3. Let σ be an irreducible discrete series representation of Gn . Let ρ be
an irreducible supercuspidal self-dual representation of GL(dρ, F) and a ∈ Z+.
Then (ρ, a) ∈ Jord(σ ) if and only if the following conditions hold:

(J-1′) ρ⊗ Sa is of the same type as Ĝ,

(J-2) δ(ρ, a)o σ is irreducible.
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106 DUBRAVKA BAN AND DAVID GOLDBERG

Proof. We will prove that (J-1)⇔ (J-1′). We know from [Shahidi 1990] that one
and only one of the two L-functions L(s, ρ,

∧2
) and L(s, ρ,Sym2) has a pole at

s = 0. Suppose G = Sp(2n, F) or O(2n, F). We consider L(s, ρ,
∧2
). It has

a pole at s = 0 if and only if the parameter ρ : WF → GL(dρ,C) is symplectic.
According to (1), this is equivalent to ρ⊗Sa being orthogonal for a even. Therefore,
for (ρ, a) ∈ Jord(σ ), a is even if and only if ρ ⊗ Sa is orthogonal. For G =
SO(2n+ 1, F), the arguments are similar. �

2.3. Assumptions. In this paper, we use the classification of discrete series for
classical p-adic groups of Mœglin and Tadić [Mœglin and Tadić 2002], so we
have to make the same assumptions as there. Let σ be an irreducible supercuspidal
representation of Gn and let ρ be an irreducible self-dual supercuspidal represen-
tation of a general linear group. We make the following assumption:

(BA) ν±(a+1)/2ρo σ reduces for

a =


max Jordρ(σ ) if Jordρ(σ ) 6=∅,

0 if L(s, ρ, Rdρ ) has a pole at s = 0 and Jordρ(σ )=∅,
−1 otherwise.

Moreover, there are no other reducibility points in R.

In addition, we assume that the L-parameter of σ is given by

(3) ϕσ =
⊕

(ρ,a)∈Jord(σ )

ϕρ ⊗ Sa.

Here, ϕρ denotes the L-parameter of ρ given in [Harris and Taylor 2001; Henniart
2000].

Mœglin [2007a], assuming certain Fundamental Lemmas, proved the validity
of the assumptions for SO(2n+ 1, F) and showed how Arthur’s results imply the
Langlands classification of discrete series for SO(2n+ 1, F).

2.4. The Arthur R-group. Let L G = ĜoWF be the L-group of G, and suppose
L M is the L-group of a Levi subgroup, M , of G. Then L M is a Levi subgroup of
L G (see [Borel 1979, Section 3] for the definition of parabolic subgroups and Levi
subgroups of LG). Suppose ψ is an A-parameter of G which factors through LM ,

ψ :WF ×SL(2,C)×SL(2,C)−→ LM ⊂ LG.

Then we can regard ψ as an A-parameter of M . Suppose, in addition, the image
of ψ is not contained in a smaller Levi subgroup (i.e., ψ is an elliptic parameter
of M).
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R-GROUPS AND PARAMETERS 107

Let Sψ be the centralizer in Ĝ of the image of ψ and S0
ψ its identity component.

If Tψ is a maximal torus of S0
ψ , define

Wψ = NSψ (Tψ)/ZSψ (Tψ), W 0
ψ = NS0

ψ
(Tψ)/ZS0

ψ
(Tψ), Rψ =Wψ/W 0

ψ .

Lemma 2.3 of [Ban and Zhang 2005] and the discussion on page 326 of [Ban and
Zhang 2005] imply that Wψ can be identified with a subgroup of W (G, A).

Let σ be an irreducible unitary representation of M . Assume σ belongs to the
A-packet 5ψ(M). If W (σ )= {w ∈W (G, A) |wσ ∼= σ }, we let

Wψ,σ =Wψ ∩W (σ ), W 0
ψ,σ =W 0

ψ ∩W (σ ),

and take Rψ,σ =Wψ,σ/W 0
ψ,σ as the Arthur R-group.

3. Centralizers

Let G be Sp(2n, F), SO(2n+1, F) or O(2n, F). Let Ĝ be the complex dual group
of G. Let

ψ :WF ×SL(2,C)×SL(2,C)−→ Ĝ ⊂ GL(N ,C)

be an A-parameter. We consider ψ as a representation. Then ψ is a direct sum
of irreducible subrepresentations. Let ψ0 be an irreducible subrepresentation. For
m ∈ N, set

mψ0 = ψ0⊕ · · ·⊕ψ0︸ ︷︷ ︸
m times

.

If ψ0 � ψ̃0, then it can be shown using the bilinear form on Ĝ that ψ̃0 is also
a subrepresentation of ψ . Therefore, ψ decomposes into a sum of irreducible
subrepresentations

ψ = (m1ψ1⊕m1ψ̃1)⊕ · · ·⊕ (mkψk ⊕mkψ̃k)⊕mk+1ψk+1⊕ · · ·⊕mlψl,

where ψi � ψ j , ψi � ψ̃ j for i 6= j . In addition, ψi � ψ̃i for i = 1, . . . , k and
ψi ∼= ψ̃i for i = k + 1, . . . , l. If ψi ∼= ψ̃i , then ψi factors through a symplectic or
orthogonal group. In this case, if ψi is not of the same type as Ĝ, then mi must be
even. This follows again using the bilinear form on Ĝ.

We want to compute Sψ and Wψ . First, we consider the case ψ = mψ0 or
ψ =mψ0⊕mψ̃0, where ψ0 is irreducible. The following lemma is an extension of
Proposition 6.5 of [Gross and Prasad 1992]. A part of the proof was communicated
to us by Joe Hundley.

Lemma 4. Let G be Sp(2n, F), SO(2n+ 1, F) or O(2n, F). Let

ψ0 :WF ×SL(2,C)×SL(2,C)→ GL(d0,C)

be an irreducible parameter.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
391/2

40



108 DUBRAVKA BAN AND DAVID GOLDBERG

(i) Suppose ψ0 � ψ̃0 and ψ = mψ0⊕mψ̃0. Then Sψ ∼= GL(m,C) and Rψ = 1.

(ii) Suppose ψ0 ∼= ψ̃0 and ψ = mψ0. Suppose ψ0 is of the same type as Ĝ. Then

Rψ ∼=
{

Z2 for m even,
1 for m odd.

(iii) Suppose ψ0 ∼= ψ̃0 and ψ = mψ0. Suppose ψ0 is not of the same type as Ĝ.
Then m is even, Sψ ∼= Sp(m,C) and Rψ = 1.

Proof. (i) The proof of the statement is the same as in [Gross and Prasad 1992].

(ii) and (iii) Suppose G = Sp(2n, F) or SO(2n+ 1, F). Let V and V0 denote the
spaces of the representationsψ andψ0, respectively. Denote by 〈 , 〉 theψ-invariant
bilinear form on V and by 〈 , 〉0 the ψ0-invariant bilinear form on V0. There exists
an isomorphism V → V0 ⊕ · · · ⊕ V0. Equivalently, V ∼= W ⊗ V0, where W is
a finite dimensional vector space with trivial WF × SL(2,C)× SL(2,C)-action.
The space W can be identified with HomWF×SL(2,C)×SL(2,C)(V0, V ). Then the map
W ⊗ V0→ V is

l⊗ v 7→ l(v), l ∈ HomWF×SL(2,C)×SL(2,C)(V0, V ), v ∈ V0.

We claim there exists a nondegenerate bilinear form 〈 , 〉W on W such that 〈 , 〉 =
〈 , 〉W ⊗〈 , 〉0 in the sense that

〈l1⊗ v1, l2⊗ v2〉 = 〈l1, l2〉W 〈v1, v2〉0 for all l1, l2 ∈W, v1, v2 ∈ V0.

The key ingredient is Schur’s lemma, or rather, the variant thereof stating that
every invariant bilinear form on V0 is a scalar multiple of 〈 , 〉0. Given any l1, l2 in
HomWF×SL(2,C)×SL(2,C)(V0, V ),

〈l1(v1), l2(v2)〉

is an invariant bilinear form on V0 and therefore it is equal to c〈 , 〉0, for some
constant c. We can define 〈l1, l2〉W by

〈l1, l2〉W =
〈l1(v1), l2(v2)〉

〈v1, v2〉0

because Schur’s lemma tells us that the right-hand side is independent of v1, v2 in
V0. This proves the claim. Observe that if ψ0 is not of the same type as ψ , the
form 〈 , 〉W is alternating, while in the case when ψ0 and ψ are of the same type,
the form 〈 , 〉W is symmetric.

Now, Imψ = {Im ⊗ g | g ∈ Imψ0} and

ZGL(N ,C)(Imψ)= {g⊗ z | g ∈ GL(m,C), z ∈ {λId0 | λ ∈ C×}}

= {g⊗ Id0 | g ∈ GL(m,C)}.
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R-GROUPS AND PARAMETERS 109

Let us denote by W the group of matrices in GL(W ) which preserve 〈 , 〉W , i.e.,
W = Sp(m,C) if 〈 , 〉W is an alternating form and W = O(m,C) if 〈 , 〉W is a
symmetric form. Then

Sψ = ZGL(N ,C)(Imψ)∩ Ĝ = {g⊗ Id0 | g ∈W, det(g⊗ Id0)= 1}.

It follows that in case (iii) we have Sψ ∼= Sp(m,C), S0
ψ = Sψ and Rψ = 1.

In case (ii), W= O(m,C). Since det(g⊗ Id0)= (det g)d0 , it follows

Sψ ∼=

{
O(m,C), d0 even,

SO(m,C), d0 odd .

In the case G=SO(2n+1, F),ψ0 is symplectic and d0 is even. Then Sψ∼=O(m,C)

and S0
ψ
∼= SO(m,C). If m is even, this implies Rψ ∼= Z2. For m odd, Wψ = W 0

ψ

and Rψ = 1.
In the case G = Sp(2n, F), we have Ĝ = SO(2n+ 1,C) and md0 = 2n+ 1. It

follows that m and d0 are both odd. Then Sψ ∼= SO(m,C), S0
ψ = Sψ and Rψ = 1.

The case G = O(2n, F) is similar, but simpler, because there is no condition on
determinant. It follows that Sψ ∼= O(m,C). This implies Rψ ∼= Z2 for m even and
Rψ = 1 for m odd. �

Lemma 5. Let G be Sp(2n, F), SO(2n+ 1, F) or O(2n, F). Let

ψ :WF ×SL(2,C)×SL(2,C)→ Ĝ

be an A-parameter. We can write ψ in the form

(4) ψ ∼=

( p⊕
i=1

(miψi ⊕mi ψ̃i )

)
⊕

( q⊕
i=p+1

2miψi

)

⊕

( r⊕
i=q+1

(2mi + 1)ψi

)
⊕

( s⊕
i=r+1

2miψi

)
,

where ψi is irreducible for i ∈ {1, . . . , s}, and

ψi � ψ j , ψi � ψ̃ j for i, j ∈ {1, . . . , s}, i 6= j,

ψi � ψ̃i for i ∈ {1, . . . , p},

ψi ∼= ψ̃i for i ∈ {p+ 1, . . . , s},

ψi not of the same type as Ĝ for i ∈ {p+ 1, . . . , q},

ψi of the same type as Ĝ for i ∈ {q + 1, . . . , s}.

Let d = s− r . Then
Rψ ∼= Zd

2 .
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110 DUBRAVKA BAN AND DAVID GOLDBERG

Proof. Set 9i = miψi ⊕mi ψ̃i for all i ∈ {1, . . . , p}, and 9i = miψi for all i ∈
{p+1, . . . , s}. Denote by Zi the centralizer of the image of9i in the corresponding
GL. Then

ZGL(N ,C)(Imψ)= Z1× · · ·× Zs and Sψ = ZGL(N ,C)(Imψ)∩ Ĝ.

Lemma 4 tells us the factors corresponding to i ∈ {1, . . . , q} do not contribute to
Rψ . In addition, we can see from the proof of Lemma 4 that these factors do not
appear in determinant considerations. Therefore, we can consider only the factors
corresponding to i ∈ {q + 1, . . . , s}. Let Z = Zq+1× · · · × Zs and S = Z∩ Ĝ. In
the same way as in the proof of Lemma 4, we obtain

(5) S∼=
{
(gq+1,...,gs) | gi ∈ O(2mi + 1,C), i ∈ {q + 1,...,r},

gi ∈ O(2mi ,C),i ∈ {r + 1,...,s},
s∏

i=q+1
(detgi )

dimψi = 1
}
,

for G = SO(2n+ 1, F) or Sp(2n, F). For G = O(2n, F), we omit the condition
on determinant. If G = SO(2n+1, F), then for i ∈ {q+1, . . . , s}, ψi is symplectic
and dimψi is even. Therefore, the product in (5) is always equal to 1.

Now, for G = SO(2n+ 1, F) and G = O(2n, F), we have

S∼=
r∏

i=q+1
O(2mi + 1,C)×

s∏
i=r+1

O(2mi ,C).

It follows that Rψ ∼=
∏r

i=q+1 1×
∏s

i=r+1 Z2 ∼= Zd
2 .

It remains to consider G = Sp(2n, F), Ĝ = SO(2n+ 1,C). We have

q∑
i=1

2mi dimψi +
r∑

i=q+1
(2mi + 1) dimψi +

p∑
i=1

2mi dimψi = 2n+ 1.

Since the total sum is odd, we must have r > q and dimψi odd, for some i ∈
{q + 1, . . . , r}. Without loss of generality, we may assume dimψq+1 odd. Then

S∼= SO(2mq+1+ 1,C)×
r∏

i=q+2
O(2mi + 1,C)×

s∏
i=r+1

O(2mi ,C).

It follows Rψ ∼= 1×
∏r

i=q+2 1×
∏s

i=r+1 Z2 ∼= Zd
2 . �

4. Even orthogonal groups

4.1. R-groups for nonconnected groups. In this section, we review some results
of [Goldberg and Herb 1997]. Let G be a reductive F-group. Let G0 be the
connected component of the identity in G. We assume that G/G0 is finite and
abelian.
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R-GROUPS AND PARAMETERS 111

Let π be an irreducible unitary representation of G. We say that π is discrete
series if the matrix coefficients of π are square integrable modulo the center of G.

We will consider the parabolic subgroups and the R-groups as defined in [Gold-
berg and Herb 1997]. Let P0

= M0U be a parabolic subgroup of G0. Let A be
the split component in the center of M0. Define M = CG(A) and P = MU . Then
P is called the cuspidal parabolic subgroup of G lying over P0. The Lie algebra
L(G) can be decomposed into root spaces with respect to the roots 8 of L(A),

L(G)= L(M)⊕
∑
α∈8

L(G)α.

Let σ be an irreducible unitary representation of M . We denote by rM0,M(σ ) the
restriction of σ to M0. Then, by Lemma 2.21 of [Goldberg and Herb 1997], σ
is discrete series if and only if any irreducible constituent of rM0,M(σ ) is discrete
series. Now, suppose σ is discrete series. Let σ0 be an irreducible constituent of
rM0,M(σ ). Then σ0 is discrete series and we have the Knapp–Stein R-group R(σ0)

for iG0,M0(σ0) [Knapp and Stein 1971; Silberger 1978]. We review the definition
of R(σ0). Let W (G0, A)= NG0(A)/M0 and WG0(σ0)={w ∈WG(M) |wσ0∼= σ0}.

For w ∈ WG0(σ0), we denote by A(w, σ0) the normalized standard intertwining
operator associated to w (see [Silberger 1979]). Define

W 0
G0(σ0)= {w ∈WG0(σ0) |A(w, σ0) is a scalar}.

Then W 0
G0(σ0)=W (81) is generated by reflections in a set 81 of reduced roots of

(G, A). Let 8+ be the positive system of reduced roots of (G, A) determined by
P and let 8+1 =81 ∩8

+. Then

R(σ0)= {w ∈WG0(σ0) | wβ ∈8
+ for all β ∈8+1 }

and WG0(σ0)= R(σ0)nW (81).
For the definition of R(σ ), we follow [Goldberg and Herb 1997]. Define

NG(σ )= {g ∈ NG(M) | gσ ∼= σ },

WG(σ )= NG(σ )/M, and

R(σ )= {w ∈WG(σ ) | wβ ∈8
+ for all β ∈8+1 }.

For w ∈WG(σ ), let A(w, σ ) denote the intertwining operator on iG,M(σ ) defined
in [Goldberg and Herb 1997, page 135]. Then the A(w, σ ), w∈ R(σ ), form a basis
for the algebra of intertwining operators on iG,M(σ ), by Theorem 5.16 of [Goldberg
and Herb 1997]. In addition, WG(σ )= R(σ )nW (81). For w ∈WG(σ ), A(w, σ )

is a scalar if and only if w ∈W (81); see [Goldberg and Herb 1997, Lemma 5.20].

4.2. Even orthogonal groups. Let G = O(2n, F) and G0
= SO(2n, F). Then

G=G0o{1, s}, where s=diag
(
In−1,

( 0
1

1
0

)
, In−1

)
and it acts on G0 by conjugation.
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112 DUBRAVKA BAN AND DAVID GOLDBERG

(a) Let

M0
= {diag(g1, . . . , gr , h, τ g−1

r , . . . , τ g−1
1 ) | gi ∈ GL(ni , F), h ∈ SO(2m, F)}

∼= GL(n1, F)× · · ·×GL(nr , F)×SO(2m, F),

where m > 1 and n1+ · · ·+ nr +m = n. Then M0 is a Levi subgroup of G0. The
split component of M0 is

A = {diag(λ1 In1, . . . , λr Inr , I2m, λ
−1
r Inr , . . . , λ

−1
1 In1) | λi ∈ F×}.

Then M = CG(A) is equal to

(6) M = {diag(g1, . . . , gr ,h, τ g−1
r , . . . , τ g−1

1 ) | gi ∈ GL(ni , F),h ∈ O(2m, F)}
∼= GL(n1, F)× · · ·×GL(nr , F)× O(2m, F).

Let π ∈ E2(M). Then π ∼= ρ1 ⊗ · · · ⊗ ρk ⊗ σ, where ρi ∈ E2(GL(ni , F)) and
σ ∈ E2(O(2m, F)). Let π0 ∼= ρ1⊗ · · · ⊗ ρk ⊗ σ0 be an irreducible component of
rM0,M(π). If sσ0 ∼= σ0, then WG(π) = WG0(π0) and R(π) = R(π0). In this case,
rM0,M(π)= π0, by Lemma 4.1 of [Ban and Jantzen 2003], and ρi oσ is reducible
if and only if ρi o σ0 is reducible, by Proposition 2.2 of [Goldberg 1995]. Then
Theorem 6.5 of [Goldberg 1994] tells us that R(π) ∼= Zd

2 , where d is the number
of inequivalent ρi with ρi o σ reducible.

Now, consider the case sσ0 � σ0. It follows from Lemma 4.1 of [Ban and
Jantzen 2003] that π = iM,M0(π0). Then iG,M(π)= iG,M0(π0) and we know from
Theorem 3.3 of [Goldberg 1995] that R(π) ∼= Zd

2 , where d = d1 + d2, d1 is the
number of inequivalent ρi such that ni is even and ρi o σ is reducible, and d2 is
the number of inequivalent ρi such that ni is odd and ρi ∼= ρ̃i . Moreover, Corollary
3.4 of [Goldberg 1995] implies if ni is odd and ρi ∼= ρ̃i , then ρi o σ is reducible.
Therefore, we see that R(π)∼= Zd

2 , where d is the number of inequivalent ρi with
ρi o σ reducible.

In the case m = 1, since

SO(2, F)=
{(

a 0
0 a−1

) ∣∣∣ a ∈ F×
}
,

we have

M0
= {diag(g1, . . . , gr , a, a−1, τ g−1

r , . . . , τ g−1
1 ) | gi ∈ GL(ni , F), a ∈ F×}

∼= GL(n1, F)× · · ·×GL(nr , F)×GL(1, F),

and this case is described in (b).

(b) Let M0 be a Levi subgroup of G0 of the form

M0
= {diag(g1, . . . , gr ,

τ g−1
r , . . . , τ g−1

1 ) | gi ∈ GL(ni , F)}
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R-GROUPS AND PARAMETERS 113

where n1+ · · ·+ nr = n. The split component of M0 is

A = {diag(λ1 In1, . . . , λr Inr , λ
−1
r Inr , . . . , λ

−1
1 In1) | λi ∈ F×}

and M = CG(A)= M0. Therefore,

(7) M = {diag(g1, . . . , gr ,
τ g−1

r , . . . , τ g−1
1 ) | gi ∈ GL(ni , F)}

∼= GL(n1, F)× · · ·×GL(nr , F).

Let π ∼= ρ1⊗ · · · ⊗ ρk ⊗ 1 ∈ E2(M), where 1 denotes the trivial representation of
the trivial group. Since M = M0, we can apply directly Theorem 3.3 of [Goldberg
1995]. It follows R(π)∼= Zd

2 , where d = d1+ d2, d1 is the number of inequivalent
ρi such that ni is even and ρio1 is reducible, and d2 is the number of inequivalent
ρi such that ni is odd and ρi ∼= ρ̃i . As above, it follows from Corollary 3.4 of
[Goldberg 1995] that if ni is odd and ρi ∼= ρ̃i , then ρi oσ is reducible. Again, we
obtain R(π)∼=Zd

2 , where d is the number of inequivalent ρi with ρioσ reducible.
We summarize the above considerations in the following lemma. Observe that

the group O(2, F) does not have square integrable representations. It also does not
appear as a factor of cuspidal Levi subgroups of O(2n, F). We call a subgroup M
defined by (6) or (7) a standard Levi subgroup of O(2n, F).

Lemma 6. Let G = O(2n, F) and consider a standard Levi subgroup of G of the
form

M ∼= GL(n1, F)× · · ·×GL(nr , F)× O(2m, F),

where m ≥ 0, m 6= 1, n1+ · · ·+ nr +m = n. Let π ∼= ρ1⊗ · · ·⊗ ρk ⊗ σ ∈ E2(M).
Then R(π)∼= Zd

2 , where d is the number of inequivalent ρi with ρi o σ reducible.

5. R-groups of discrete series

Let G be Sp(2n, F), SO(2n+ 1, F) or O(2n, F).

Theorem 7. Let π be an irreducible discrete series representation of a standard
Levi subgroup M of Gn . Let ϕ be the L-parameter of π . Then Rϕ,π ∼= R(π).

Proof. We can write π in the form

(8) π ∼= (⊗
m1δ1)⊗ · · ·⊗ (⊗

mr δr )⊗ σ

where σ is an irreducible discrete series representation of Gm and δi (i = 1, . . . , r )
is an irreducible discrete series representation of GL(ni , F) such that δi � δ j for
i 6= j . As explained in Section 4, if Gn = O(2n, F), then m 6= 1.

Let ϕi denote the L-parameter of δi and ϕσ the L-parameter of σ . Then the
L-parameter ϕ of π is

ϕ ∼= (m1ϕ1⊕m1ϕ̃1)⊕ · · ·⊕ (mrϕr ⊕mr ϕ̃r )⊕ϕσ .
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114 DUBRAVKA BAN AND DAVID GOLDBERG

Each ϕi is irreducible. The parameter ϕσ is of the form ϕσ = ϕ
′

1⊕ · · ·⊕ϕ
′
s where

ϕ′i are irreducible, ϕ′i ∼= ϕ̃
′

i and ϕ′i � ϕ
′

i for i 6= j . In addition, ϕ′i factors through a
group of the same type as Ĝn . The sets {ϕi | i = 1, . . . , r} and {ϕ′i | i = 1, . . . , s}
can have nonempty intersection. After rearranging the indices, we can write ϕ as

ϕ ∼=

( h⊕
i=1

(miϕi ⊕mi ϕ̃i )

)
⊕

( q⊕
i=h+1

2miϕi

)
⊕

( k⊕
i=q+1

2miϕi

)

⊕

( r⊕
i=k+1

(2mi + 1)ϕi

)
⊕

( l⊕
i=r+1

ϕi

)
,

where ϕσ =
⊕l

i=k+1 ϕi and

ϕi � ϕ j , ϕi � ϕ̃ j for i, j ∈ {1, . . . , l}, i 6= j,

ϕi � ϕ̃i for i ∈ {1, . . . , h},

ϕi ∼= ϕ̃i for i ∈ {h+ 1, . . . , l},

ϕi not of the same type as Ĝ for i ∈ {h+ 1, . . . , q},

ϕi of the same type as Ĝ for i ∈ {q + 1, . . . , k}.

Let d = k− q . Lemma 5 implies Rϕ ∼= Zd
2 . In addition, Rϕ,π ∼= Rϕ .

On the other hand, we know that R(π)∼= Zc
2, where c is cardinality of the set

C = {i ∈ {1, . . . , r} | δi o σ is reducible}.

This follows from [Goldberg 1994] for G = SO(2n + 1, F) and G = Sp(2n, F),
and from Lemma 6 for G = O(2n, F). We want to show C = {q + 1, . . . , k}.
For any i ∈ {1, . . . , l}, ϕi is an irreducible representation of WF × SL(2,C) and
therefore it can be written in the form ϕi = ϕ

′

i ⊗ Sai , where ϕ′i is an irreducible
representation of WF and Sai is the standard irreducible ai -dimensional algebraic
representation of SL(2,C). For i ∈ {1, . . . , r}, this parameter corresponds to the
representation δ(ρi , ai ). Therefore, the representation δi in (8) is δi = δ(ρi , ai ).

From (3), we have

ϕσ =

l⊕
i=k+1

ϕi =
⊕

(ρ,a)∈Jord(σ )

ϕρ ⊗ Sa.

For i ∈{h+1, . . . , q}, ϕi is not of the same type as Ĝ and δ(ρi , ai )oσ is irreducible.
For i ∈{q+1, . . . , k}, ϕi is of the same type as Ĝ. Now, Lemma 3 tells us (ρi , ai )∈

Jord(σ ) if and only if δ(ρi , ai ) o σ is irreducible. Therefore, δ(ρi , ai ) o σ is
irreducible for i ∈{k+1, . . . , r} and δ(ρi , ai )oσ is reducible for i ∈{q+1, . . . , k}.
It follows C = {q + 1, . . . , k} and R(π)∼= Zd

2
∼= Rϕ,π , finishing the proof. �
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R-GROUPS AND PARAMETERS 115

6. Unitary groups

Let E/F be a quadratic extension of p-adic fields. Fix θ ∈WF \WE . Let G=U (n)
be a unitary group defined with respect to E/F , U (n)⊂ GL(n, E). Let

Jn =


1

–1
1

·

·

 .
We have

LG = GL(n,C)oWF ,

where WE acts trivially on GL(n,C) and the action ofw∈WF\WE on g∈GL(n,C)

is given by w(g)= Jn
tg−1 J−1

n .

6.1. L-parameters for Levi subgroups. Suppose we have a Levi subgroup M ∼=
ResE/F GLk ×U (l). Then

LM0
=

{( g
m

h

) ∣∣∣ g, h ∈ GL(k,C),m ∈ GL(l,C)
}
.

Direct computation shows that the action of w ∈WF \WE on LM0 is given by

w
(( g

m
h

))
=

Jk
th−1 J−1

k
Jl

tm−1 J−1
l

Jk
tg−1 J−1

k

 .
Let π be a discrete series representation of GL(k, E) = (ResE/F GLk)(F) and

τ a discrete series representation of U (l). Let ϕπ :WE ×SL(2,C)→GL(k,C) be
the L-parameter of π and ϕτ :WF ×SL(2,C)→GL(l,C)oWF the L-parameter
of τ . Write

ϕτ (w, x)= (ϕ′τ (w, x), w), w ∈WF , x ∈ SL(2,C).

According to [Borel 1979, Sections 4, 5 and 8], there exists a unique (up to
equivalence) L-parameter ϕ :WF ×SL(2,C)→ LM such that

(9)
ϕ((w, x))= (ϕπ (w), ∗, ∗, w) for all w ∈WE , x ∈ SL(2,C),

ϕ((w, x))= (∗, ϕ′τ (w, x), ∗, w) for all w ∈WF , x ∈ SL(2,C).

We will define a map ϕ : WF × SL(2,C)→ LM satisfying (9) and show that ϕ is
a homomorphism. Define

(10) ϕ((w, x))= (ϕπ (w, x), ϕ′τ (w, x),tϕπ (θwθ−1, x)−1, w),

w ∈WE , x ∈ SL(2,C)
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116 DUBRAVKA BAN AND DAVID GOLDBERG

and
ϕ((θ, 1))= (J−1

k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, θ).

Note that
ϕτ (θ

2, 1)= (ϕ′τ (θ, 1), θ)(ϕ′τ (θ, 1), θ)

= (ϕ′τ (θ, 1), 1)(Jl
tϕ′τ (θ, 1)−1 J−1

l , θ2)

= (ϕ′τ (θ, 1)Jl
tϕ′τ (θ, 1)−1 J−1

l , θ2).

It follows that

(11) ϕ′τ (θ, 1)Jl
tϕ′τ (θ, 1)−1 J−1

l = ϕ
′

τ (θ
2, 1).

Similarly, for w ∈WE , x ∈ SL(2,C),

ϕτ (θwθ
−1, x)= ϕτ (θ, 1)ϕτ (w, x)ϕτ (θ, 1)−1

= (ϕ′τ (θ, 1), θ)(ϕ′τ (w, x), w)(1, θ−1)(ϕ′τ (θ, 1)−1, 1)

= (ϕ′τ (θ, 1), 1)(Jl
tϕ′τ (w, x)−1 J−1

l , θwθ−1)(ϕ′τ (θ, 1)−1, 1)

= (ϕ′τ (θ, 1)Jl
tϕ′τ (w, x)−1 J−1

l ϕ′τ (θ, 1)−1, θwθ−1)

and thus

(12) ϕ′τ (θ, 1)Jl
tϕ′τ (w, x)−1 J−1

l ϕ′τ (θ, 1)−1
= ϕ′τ (θwθ

−1, x).

Now,

ϕ(θ, 1)ϕ(θ, 1)

=
(
J−1

k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, θ
)(

J−1
k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, θ

)
=
(
J−1

k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, 1
)(

Jkϕπ (θ
2, 1), Jl

tϕ′τ (θ, 1)−1 J−1
l , J−1

k , θ2)
=
(
ϕπ (θ

2, 1), ϕ′τ (θ
2, 1),tϕπ (θ2, 1)−1, θ2)

= ϕ(θ2, 1),

using (11) and (10). Further, for w ∈WE , x ∈ SL(2,C), we have

ϕ(θ, 1)ϕ(w, x)ϕ(θ, 1)−1

=
(
J−1

k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, θ
)(
ϕπ (w, x), ϕ′τ (w, x),tϕπ (θwθ−1, x)−1, w

)
· (1, 1, 1, θ−1)

(
Jk, ϕ

′

τ (θ, 1)−1, J−1
k

tϕπ (θ
2, 1), 1

)
=
(
J−1

k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, 1
)

·
(
Jkϕπ (θwθ

−1, x)J−1
k , Jl

tϕ′τ (w, x)−1 J−1
l , Jk

tϕπ (w, x)−1 J−1
k , θwθ−1)

·
(
Jk, ϕ

′

τ (θ, 1)−1, J−1
k

tϕπ (θ
2, 1), 1

)
=
(
ϕπ (θwθ

−1, x), ϕ′τ (θwθ
−1, x),tϕπ (θ2wθ−2, x)−1, θwθ−1)

= ϕ(θwθ−1, x).
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R-GROUPS AND PARAMETERS 117

Here, we use (12) and J 2
k = (J

−1
k )2 = (−1)k−1, so

tϕπ (θ
2, 1)−1 Jk Jk

tϕπ (w, x)−1 J−1
k J−1

k
tϕπ (θ

2, 1)= tϕπ (θ
2wθ−2, x)−1.

In conclusion, ϕ(θ2, 1) = ϕ(θ, 1)2 and ϕ(θwθ−1, x) = ϕ(θ, 1)ϕ(w, x)ϕ(θ, 1)−1.
Since ϕ is clearly multiplicative on WE × SL(2,C), it follows that ϕ is a homo-
morphism. Therefore, ϕ is the L-parameter for π ⊗ τ .

6.2. The coefficients λϕ . Let ϕ : WE × SL(2,C) → GLk(C) be an irreducible
L-parameter. Assume ϕ ∼= t(θϕ)−1. Let X be a nonzero matrix such that

tϕ(θwθ−1, x)−1
= X−1ϕ(w, x)X,

for all w ∈ WE , x ∈ SL(2,C). We proceed similarly as in [Mœglin 2002, p. 190].
By taking transpose and inverse,

ϕ(θwθ−1, x)= t X tϕ(w, x)−1 t X−1.

Next, we replace w by θwθ−1. This gives

ϕ(θ2, 1)ϕ(w, x)ϕ(θ−2, 1)= t X tϕ(θwθ−1, x)−1 t X−1
=

t X X−1ϕ(w, x)X t X−1,

for allw∈WE , x ∈SL(2,C). Since ϕ is irreducible, ϕ(θ−2, 1) t X X−1 is a constant.
Define

(13) λϕ = ϕ(θ
−2, 1) t X X−1.

As in [Mœglin 2002], we can show that λϕ =±1.

Lemma 8. Let ϕ : WE → GLk(C) be an irreducible L-parameter such that ϕ ∼=
t(θϕ)−1. Let Sa be the standard a-dimensional irreducible algebraic representation
of SL(2,C). Then θ ( t(ϕ⊗ Sa)

−1)∼= ϕ⊗ Sa and

λϕ⊗Sa = (−1)a+1λϕ.

Proof. We know that t S−1
a
∼= Sa . Let Y be a nonzero matrix such that

t Sa(x)−1
= Y−1Sa(x)Y,

for all x ∈ SL(2,C). Then t Y = Y for a odd and t Y =−Y for a even. Let X be a
nonzero matrix such that

tϕ(θwθ−1)−1
= X−1ϕ(w)X,

for all w ∈WE . We have
t(ϕ⊗ Sa(θwθ

−1, x))−1
= (tϕ(θwθ−1)−1)⊗ (t Sa(x)−1)

= (X−1ϕ(w)X)⊗ (Y−1Sa(x)Y )

= (X ⊗ Y )−1(ϕ⊗ Sa(w, x))⊗ (X ⊗ Y ).
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118 DUBRAVKA BAN AND DAVID GOLDBERG

It follows that θ ( t(ϕ⊗ Sa)
−1)∼= ϕ⊗ Sa and

λϕ⊗Sa = (ϕ⊗ Sa(θ
−2, 1)) t(X ⊗ Y )(X ⊗ Y )−1

= (ϕ(θ−2) t X X−1)⊗ ( tY Y−1))= (−1)a+1λϕ. �

6.3. Centralizers. Let ϕ :WF×SL(2,C)→ L G be an L-parameter. Denote by ϕE

the restriction of ϕ to WE×SL(2,C). Then ϕE is a representation of WE×SL(2,C)

on V = Cn . Write ϕE as a sum of irreducible subrepresentations

ϕE = m1ϕ1⊕ · · ·⊕mlϕl,

where mi is the multiplicity of ϕi and ϕi � ϕ j for i 6= j . It follows from [Mœglin
2002] that Sϕ , the centralizer in Ĝ of the image of ϕ, is given by

(14) Sϕ ∼=
l∏

i=1

C(miϕi ),

where

C(miϕi )=


GL(mi ,C) ifϕi � θ ϕ̃i ,

O(mi ,C) ifϕi ∼=
θ ϕ̃i , λϕi = (−1)n−1,

Sp(mi ,C) ifϕi ∼=
θ ϕ̃i , λϕi = (−1)n.

6.4. Coefficients λρ . Let L M = GLk(C) × GLk(C) o WF , where the action of
w ∈WF \WE on GLk(C)×GLk(C) is given by

w(g, h, 1)w−1
= (Jn

th−1 J−1
n , Jn

tg−1 J−1
n , 1).

For η =±1, we denote by Rη the representation of L M on EndC(C
k) given by

Rη((g, h, 1)) · X = gXh−1,

Rη((1, 1, θ)) · X = ηJk
t X Jk .

Let τ denote the nontrivial element in Gal(E/F). Let ρ be an irreducible unitary
supercuspidal representation of GL(k, E). Assume ρ ∼= τ ρ̃. Then precisely one of
the two L-functions L(s, ρ, R1) and L(s, ρ, R−1) has a pole at s = 0. Denote by
λρ the value of η such that L(s, ρ, Rη) has a pole at s = 0.

Lemma 9. Assume that ρ is an irreducible unitary supercuspidal representation
of GL(k, E) such that ρ ∼= τ ρ̃. Let ϕρ be the L-parameter of ρ. Then λϕρ = λρ .

Proof. As shown in Section 6.1, the parameter ϕ : WF →
L M corresponding to

ϕρ :WE → GLk(C) is given by

(15) ϕ(w)=

((
ϕρ(w)

tϕρ(θwθ
−1)−1

)
, w

)
,
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R-GROUPS AND PARAMETERS 119

for w ∈WE , and

(16) ϕ(θ)=

((
J−1

k
tϕρ(θ

2)−1 Jk

)
, θ

)
.

From [Henniart 2010], we have L(s, ρ, Rη)= L(s, Rη◦ϕ). Therefore, L(s, Rλρ◦ϕ)
has a pole at s = 0. Then Rλρ ◦ϕ contains the trivial representation, so there exists
nonzero X ∈ Mk(C) such that (Rλρ ◦ϕ)(w) · X = X for all w ∈WF . In particular,
(15) implies that for w ∈WE ,

ϕρ(w)X tϕρ(θwθ
−1)= X

so

(17) ϕρ(w)X = X tϕρ(θwθ
−1)−1.

Therefore, X is a nonzero intertwining operator between ϕρ and t(θϕρ)
−1. From

(13), we have

(18) ϕρ(θ
−2) t X X−1

= λϕρ .

Now, since (Rλρ ◦ϕ)(θ) · X = X , we have from (16)

t X tϕρ(θ
2)= λρX.

By transposing and multiplying by X−1, we obtain

ϕρ(θ
2)= λρ

t X X−1.

We compare this to (18). It follows λϕρ = λρ . �

6.5. Jordan blocks for unitary groups. For the unitary group U (n), define

Rd = Rη, where η = (−1)n.

Let σ be an irreducible discrete series representation of U (n). Denote by Jord(σ )
the set of pairs (ρ, a), where ρ ∈ 0E(GL(dρ, E)), ρ ∼= τ ρ̃, and a ∈ Z+, such that
(ρ, a) satisfies properties (J-1) and (J-2) from Section 2.2.

Lemma 10. Let ρ be an irreducible supercuspidal representation of GL(d, E)
such that ϕρ ∼= θ ϕ̃ρ, where ϕρ is the L-parameter for ρ. Then the condition (J-1)
is equivalent to

(J-1′′) λϕρ⊗Sa = (−1)n+1.
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120 DUBRAVKA BAN AND DAVID GOLDBERG

Proof. The condition (J-1) says that a is even if L(s, ρ, Rd) has a pole at s = 0 and
odd otherwise. Observe that

L(s, ρ, Rd) has a pole at s = 0⇐⇒ λϕρ = (−1)n

⇐⇒ λϕρ⊗Sa = (−1)n(−1)a+1

⇐⇒ λϕρ⊗Sa =

{
(−1)n+1 a even,
(−1)n a odd.

From this, it is clear that (J-1) is equivalent to (J-1′′). �

6.6. R-groups for unitary groups.

Lemma 11. Let σ be an irreducible discrete series representation of U (n) and let
δ = δ(ρ, a) be an irreducible discrete series representation of GL(l, E), l = da,
d = dim(ρ). Let ϕρ and ϕ be the L-parameters of ρ and π = δ⊗ σ , respectively.
Then Rϕ,π ∼= R(π).

Proof. Let ϕσ be the L-parameter of σ . Then

ϕE ∼= ϕρ ⊗ Sa ⊕
θ ϕ̃ρ ⊗ Sa ⊕ (ϕσ )E .

This is a representation of WE ×SL(2,C) on V =Cn+2l . Write (ϕσ )E as a sum of
irreducible components,

(ϕσ )E = ϕ1⊕ · · ·⊕ϕm .

Each component appears with multiplicity one. The centralizer Sϕ is given by (14).
If ϕρ � θ ϕ̃ρ, then

Sϕ ∼= GL(1,C)×GL(1,C)×

m∏
i=1

GL(1,C).

This implies Rϕ = 1. On the other hand, δ o σ is irreducible, so R(π) = 1. It
follows Rϕ,π ∼= R(π).

Now, consider the case ϕρ ∼= θ ϕ̃ρ . If ϕρ ⊗ Sa ∈ {ϕ1, . . . , ϕm}, then

Sϕ ∼= O(3,C)×

m−1∏
i=1

GL(1,C) and S0
ϕ
∼= SO(3,C)×

m−1∏
i=1

GL(1,C).

This gives Wϕ = W 0
ϕ and Rϕ = 1. Since ϕρ ⊗ Sa ∈ {ϕ1, . . . , ϕm}, the condition

(J-2) implies that δo σ is irreducible. Therefore, R(π)= 1= Rϕ,π .
It remains to consider the case ϕρ ∼= θ ϕ̃ρ and ϕρ ⊗ Sa /∈ {ϕ1, . . . , ϕm}. Then

(ρ, a) does not satisfy (J-1′′) or (J-2). Assume first that (ρ, a) does not satisfy

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
391/2

40



R-GROUPS AND PARAMETERS 121

(J-1′′). Then δoσ is irreducible, so R(π)= 1. Since (ρ, a) does not satisfy (J-1′′),
we have λϕρ⊗Sa = (−1)n = (−1)n+2l . Then, by (14),

Sϕ ∼= Sp(2,C)×

m∏
i=1

GL(1,C).

It follows Rϕ,π = 1= R(π).
Now, assume that (ρ, a) satisfies (J-1′′), but does not satisfy (J-2). Then λϕρ⊗Sa=

(−1)n−1
= (−1)n+2l−1, so

Sϕ ∼= O(2,C)×

m∏
i=1

GL(1,C)

and Rϕ,π ∼= Z2. Since (ρ, a) does not satisfy (J-2), δ o σ is reducible and hence
R(π)∼= Z2 ∼= Rϕ,π . �
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