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Abstract

In this paper, we study the R-group conjectured by Arthur, associated to
the representation parabolically induced from a representation σ. We address
the question of which properties of the classical Knapp-Stein R-groups carry
over to Arthur’s setting, with somewhat surprising results. Some of the ba-
sic properties fail: the normalized standard intertwining operators A(r, σ),
r ∈ R in general do not form a basis of the commuting algebra and the com-
ponents of the induced representation are not in a bijective correspondence
with the irreducible representations of R. However, the action of standard
intertwining operators on the induced space has a natural description in terms
of representations of a finite group and the corresponding trace formulation
holds.

1. Introductory material

1.1. Introduction. This paper focuses on questions about R-groups. To set matters up, let
F be a p-adic field and G the F -points of a connected quasi-split group defined over F (though
we note the results in the third chapter also apply to real groups). Recall that if P = MN
is a standard parabolic subgroup of G and σ is a representation of M , we may consider the
induced representation I = IndGPσ (normalized parabolic induction). Of particular interest
to us in this paper is the case where σ is an irreducible unitary representation, in which case
π is also unitary and decomposes as a direct sum.

We start by reviewing the properties of Knapp-Stein R-groups (cf. [Sil2],[Sil3]; [Kn-St]
for the real case). Suppose σ is in the discrete series. If W is the Weyl group of G, let
W (σ) = {w ∈ W |wσ ∼= σ} (implicit is w ·M = M). The R-group is a subgroup of W (σ)
which determines the intertwining algebra HomG(I, I), among other things. The R-group is
defined in terms of Plancherel measures, whence the assumption σ is in the discrete series
(see [Sil2],[Sil3] for more details).

For w ∈ W (σ), letA(σ,w) denote the normalized standard intertwining operator (cf. [Sha2]).
For purposes of this introduction, we assume trivial cocycle, so the normalized standard in-
tertwining operators satisfy A(σ,w2)A(σ,w1) = A(σ,w2w1) for all w1, w2 ∈ W (σ). This is
known to hold in a number of important situations (e.g., if σ is generic [Sha2] or F = R
[Kn], [Art2]). In this case, the R-group has the following properties (cf. [Keys] or [Ban2]):

Properties 1.1. With notation as above,
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(1) The equivalence classes of components of I are parameterized by the irreducible rep-

resentations R̂ of R. Further, if Iρ is a component of I corresponding to ρ ∈ R̂, then
Iρ appears with multiplicity dimρ. That is,

I =
⊕

(dim ρ)Iρ.

(2) HomG(I, I) ∼= C[R] (with the isomorphism generated by r 7−→ A(σ, r) in one direc-
tion).

(3) The operators A(σ, r) act on and permute the dimρ irreducible subspaces of the Iρ-
isotypic component as the representation ρ. This may be expressed in the following
manner: for π ∼= Iρ an equivalence class of components of I, let

〈r, π〉 = trace ρ(r).

Then, for r ∈ R, f ∈ C∞
c (G),

trace (A(σ, r)I(f)) =
∑

π

〈r, π〉 trace(π(f)),

where the sum runs over the equivalence classes of components of I.

We note that if the cocycle is not trivial, the first statement still applies, along with modified
versions of the second and third. In what follows, we also use the above numbering for the
corresponding properties when the cocycle is nontrivial.

The theory of the R-group has important applications both locally and globally. Locally,
the R-group governs the reducibility of induced discrete series, hence plays a key role in the
classification of irreducible tempered representations for real and p-adic groups. Globally, the
actions of normalized standard intertwining operators–especially as formulated in (3)–arise
(as part of a corresponding global formulation) in the trace formula, hence are of interest in
automorphic forms.

Based on global considerations, Arthur conjectured a characterization of the R-group
in terms of Arthur parameters (A-parameters), which we refer to as the Arthur R-group
(cf. [Art1]). The Arthur R-group is conjectured to exist for more general unitary inducing
representations, not just discrete series. Whereas the Knapp-Stein R-group requires the in-
ducing representation to be in the discrete series in order to work with Plancherel measures,
A-parameters do not require such a constraint. We note that when the inducing representa-
tion is in the discrete series, the Arthur R-group is known to correspond to the Knapp-Stein
R-group (with properties (1)-(3) holding) in a number of situations. If F = R, they cor-
respond (cf. [She]). For F p-adic, the Arthur R-group is known to match the Knapp-Stein
R-group when G is split and the inducing representation is a character (cf. [Keys]) or for
classical groups when the inducing representation is generic (cf. [Ba-Zh]).

A number of results on the Arthur R-group concern certain special nontempered represen-
tations (cf. [Jan2],[Ban1],[Ban2],[B-J2]). The basic strategy in these results is to use a duality
operator (either the Iwahori-Matsumoto involution [I-M] or the duality of [Aub], [S-S]) to

relate IndGPσ to its dual ÎndGPσ = IndGP σ̂ when IndGPσ admits a Knapp-Stein R-group. The
properties of the classical Knapp-Stein R-groups are then transferred to the nontempered
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representation. In fact, this approach produces more refined results–the R-groups are iso-
morphic and the action of normalized standard intertwining operators closely related. This
is not so surprising given that it is expected that duality admits a nice description in terms
of A-parameters.

All the results mentioned above rely on relating Arthur R-groups to Knapp-Stein R-
groups. The representations considered are either tempered representations or duals of
tempered representations. Arthur’s definition, however, applies to a much wider class of
representations, and in the present paper we study the general case. We address the question
of which of the properties (1)-(3) carry over to Arthur R-groups in general. Therefore, we
do not have some naturally associated Knapp-Stein R-group and we work completely in the
context of Arthur parameters.

The results are somewhat surprising. The short answer is that properties (1)-(2) fail to
hold in general, while (3) does carry over. We note that it is actually property (3) which is
singled out by Arthur.

To show that (1)-(2) do not hold in general, we construct an example where they fail. The
representation we consider is

π = IndGP (StGL(2) ⊗ trivGL(2)),

where G = SO(9, F ), P = MN is the standard parabolic subgroup with Levi factor M ∼=
GL(2, F )×GL(2, F ), StGL(2) is the Steinberg representation of GL(2, F ), and trivGL(2) is the
trivial representation of GL(2, F ). Using Jacquet module methods (cf. [Tad2],[Jan3],[B-J1],
[Muić], etc.), we show π has three components. On the other hand, from [J-S], we know the
A-parameter ψ of the inducing representation σ = StGL(2) ⊗ trivGL(2), hence may calculate
the Arthur R-group Rψ,σ for π. We find that

Rψ,σ
∼= Z/2Z × Z/2Z

(not a surprising result in light of [Gol]). Since π has three components but its Arthur
R-group has four elements, we see that properties (1)-(2) fail to hold in general.

On the other hand, property (3) does generalize. Needless to say, we do not use properties
(1)-(2) in proving (3). Even though properties (1)-(3) have often been discussed together,
(3) is somehow more basic–just a property of normalized standard intertwining operators.

We now discuss the results section by section. In the next section, we review some back-
ground material on A-parameters, Arthur R-groups, etc. Chapter 2 deals with the example
of π = IndGP (StGL(2) ⊗ trivGL(2)) mentioned above. Section 2.1 contains a review of the
classical groups SO(2n + 1, F ) and their Jacquet modules. In 2.2, we use Jacquet module
methods to decompose π, showing that it has three components. In 2.3, we calculate its
Arthur R-group, showing Rψ,σ

∼= Z/2Z ×Z/2Z. These combine to show that properties (1)-
(2) fail to hold for Arthur R-groups in general. In chapter 3, we show that property (3) (or
more precisely, its extension to the nontrivial cocycle case) does hold in general. The proof
is based on general results on actions of intertwining operators (Section 3.1) and on Weyl
groups for nonconnected reductive groups (Section 3.3). These are then used in 3.4 to show
that (3) holds for Arthur R-groups in general.

Acknowledgment. D.B. wishes to thank Freydoon Shahidi, David Vogan and the seminar
Formes automorphes at Jussieu for valuable comments. She also thanks Peter Schneider for
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was done.

1.2. Notation and preliminaries. In this section, we introduce notation and recall some
results that will be needed in the rest of the paper. Let F be a p-adic field with charF=0.
Let G be a connected reductive algebraic group defined over F , G its F -points. The group
G is said to be quasi-split if it contains a Borel subgroup which is defined over F ([Sp],
Section 3.2). We shall assume that G is quasi-split over F . Fix a Borel subgroup B ⊂ G
and a maximal split torus A0 ⊂ B. Let P be a standard parabolic subgroup, i.e., a parabolic
subgroup containing B. There exists a unique Levi subgroup in P containing A0; denote it by
M . Then M is a connected reductive F -group. We denote by iG,M the functor of normalized
parabolic induction ([Be-Ze], Section 2.3). Let A be the split component of M . Denote by
X(M)F and X(A)F the groups of all F -rational characters of M and A, respectively. Let

a∗ = X(M)F ⊗Z R = X(A)F ⊗Z R

and a∗
C = a∗ ⊗R C.

We now give a brief discussion of Langlands parameters and Arthur parameters. The
reader is referred to [Bor1],[Art1] for a more detailed discussion.

Let Ĝ denote the dual of G–the complex connected reductive group whose root datum is
dual to that of G. The L-group is then

LG = ĜoWF ,

where WF denotes the Weil group of F . Here, the action of WF on Ĝ is induced from the
action of Gal(F̄ /F ) on G, where F̄ is the algebraic closure of F (cf. [Bor1]).

Let

φ : WF × SL(2,C) −→ LG

be a homomorphism. If φ commutes with projections to WF and satisfies the conditions (1)-
(5) of [Lan2], we call φ a Langlands parameter (L-parameter). We let Φ(G) denote the set of
all equivalence classes of L-parameters of G. If Π(G) denotes the set of equivalence classes of
irreducible admissible representations ofG, the Langlands correspondence predicts that Π(G)
may be partitioned into disjoint subsets (L-packets) which are in bijective correspondence
with Φ(G). For φ ∈ Φ(G), we let Πφ(G) denote the corresponding L-packet. This bijection
is expected to have certain number-theoretic properties characterized in terms of L-functions
(cf. [Bor1]).

Let W ′
F = WF × SL(2,C) denote the Weil-Deligne group. Let

ψ : W ′
F × SL(2,C) −→ LG

be a homomorphism. If ψ|W ′
F

is an L-parameter and ψ satisfies

(1) ψ|W ′
F

is tempered (i.e., the projection of ψ(WF ) to Ĝ is bounded)
(2) ψ is algebraic on the second SL(2,C),

we call ψ an Arthur parameter (A-parameter). Let Ψ(G) denote the set of equivalence classes
of A-parameters. It is expected that Π(G) has subsets (A-packets) which are in bijective
correspondence with Ψ(G). Unlike the Langlands correspondence, A-packets need not be
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disjoint. If ψ ∈ Ψ(G), we let Πψ(G) denote the corresponding A-packet. This correspondence
also has certain number-theoretic properties (cf. [Art1]).

We now turn to a discussion of Arthur R-groups. Suppose ψ is an A-parameter of G which
factors through LM = M̂ oWF ⊂ LG,

ψ : W ′
F × SL(2,C) −→ LM ⊂ LG.

The group LM is the L-group of M . It is a Levi subgroup of LG (see [Bor1], Section 3, for
definition of parabolic subgroups and Levi subgroups of LG). Then we can regard ψ as an
A-parameter of M . Suppose in addition that the image of ψ is not contained in a smaller
Levi subgroup (i.e., ψ is an elliptic parameter of M).

Let Sψ be the centralizer in Ĝ of the image of ψ and S0
ψ its identity component. If Tψ is

a maximal torus of S0
ψ, define

Wψ = NSψ (Tψ)/ZSψ (Tψ),

W 0
ψ = NS0

ψ
(Tψ)/ZS0

ψ
(Tψ).

Lemma 2.3 of [Ba-Zh] and the discussion on page 326 of [Ba-Zh] imply that Wψ can be
identified with a subgroup of W (G,A).

Let σ be an irreducible unitary representation of M . Assume σ belongs to the A-packet
Πψ(M). If W (σ) = {w ∈ W (G,A) |wσ ∼= σ}, we let

Wψ,σ = Wψ ∩W (σ)

W 0
ψ,σ = W 0

ψ ∩W (σ)

and take
Rψ,σ = Wψ,σ/W

0
ψ,σ

as the Arthur R-group.

2. An example

In this section, we give an example which shows that not all properties of classical R-
groups carry over to the nontempered setting. In particular, we consider the representation
StGL(2) × trivGL(2) o 1 (cf. section 2.1 for notation) of SO(9, F ). Using Jacquet module
methods, we show that this representation has 3 components (cf. Theorem 2.5). A calculation
of the Arthur R-group shows that Rψ,σ

∼= Z/2Z×Z/2Z (cf. section 2.3). In particular, |Rψ,σ|
does not give the number of components, so Properties (1)-(2) from the introduction fail.

2.1. Classical groups. In this section, we review background on special odd-orthogonal
groups which will be needed in the rest of this chapter.

We define × on general linear groups as in [Be-Ze]: if ρ1, . . . , ρk are representations of
GL(n1, F ), . . . , GL(nk, F ), let ρ1×· · ·×ρk denote the representation of GL(n1 + · · ·+nk, F )
obtained by inducing ρ1⊗· · ·⊗ρk from the standard parabolic subgroup ofGL(n1+· · ·+nk, F )
with Levi factor GL(n1, F )× · · · ×GL(nk, F ).

In much of 2.2, we work in the Grothendieck group setting. That is, we work with the
semisimplified representation. So, for any representation π and irreducible representation ρ,
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letm(ρ, π) denote the multiplicity of ρ in π. We write π = π1+· · ·+πk ifm(ρ, π) = m(ρ, π1)+
· · · +m(ρ, πk) for every irreducible ρ. Similarly, we write π ≥ π0 if m(ρ, π) ≥ m(ρ, π0) for
every such ρ. For clarity, in chapter 2 (but only chapter 2), we use = when defining something
or working in the Grothendieck group; ∼= is used to denote an actual equivalence.

We now turn to symplectic and odd-orthogonal groups. Let

Jn =




1
1.

.
.1

1




denote the n× n antidiagonal matrix above. Then,

SO(2n + 1, F ) = {X ∈ SL(2n + 1, F )|TXJ2n+1X = J2n+1}.
Note that the Weyl group is W ={ permutations and sign changes on n letters }.

We take as minimal parabolic subgroup in SO(2n + 1, F ) the subgroup P∅ consisting of
upper triangular matrices. Let α = (n1, . . . , nk) be an ordered partition of a nonnegative
integer m ≤ n into positive integers. Let Mα ⊂ SO(2n + 1, F ) be the subgroup

Mα =








X1

. . .

Xk

X
τXk

. . .
τX1




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Xi ∈ GL(ni, F ), X ∈ SO(2(n −m) + 1, F )





,

where τX = JTX−1J . Then Pα = MαP∅ is a parabolic subgroup of SO(2n + 1, F ) and
every parabolic subgroup is of this form (up to conjugation). For α = (n1, . . . , nk), let
ρ1, . . . , ρk be representations of GL(n1, F ), . . . , GL(nk, F ), respectively, and σ a representa-
tion of SO(2(n−m)+1, F ). Let ρ1×· · ·×ρk oσ denote the representation of SO(2n+1, F )
obtained by inducing the representation ρ1 ⊗ · · · ⊗ ρk ⊗ σ of Mα (extended trivially to Pα).
If m = n, we write ρ1 × · · · × ρk o 1, where 1 denotes the trivial representation of SO(1, F )
(trivial group).

We recall some structures which will be useful later (cf. section 1 of [Zel] and section 4
of [Tad1]). Let R(GL(n,F )) (resp., R(SO(2n + 1, F ))) denote the Grothendieck group of
the category of all smooth finite-length GL(n,F )-modules (resp., SO(2n + 1, F )-modules).
Set R = ⊕n≥0R(GLn(F )) and R[S] = ⊕n≥0R(SO(2n + 1, F )). The operators × and o lift
naturally to

× : R ⊗R −→ R and o : R ⊗R[S] −→ R[S].

With these multiplications, R becomes an algebra and R[S] a module over R.
Next, we introduce some convenient shorthand for Jacquet modules (cf. [Tad1]). If π

is a representation of some Sn(F ) and α is a partition of m ≤ n, let sα(π) denote the
Jacquet module with respect to Mα. Note that, by abuse of notation, we also allow sα
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to be applied to representations Mβ when Mβ > Mα (cf. section 2.1, [Be-Ze]). We will
occasionally use similar notation for representations of GL(n,F ). If α = (n1, . . . , nk) is a
partition of m ≤ n, GL(n,F ) has a standard parabolic subgroup with Levi factor Lα ∼=
GL(n1, F ) × · · · × GL(nk, F ) × GL(n −m,F ) (Lα consists of block-diagonal matrices; the
corresponding parabolic subgroup of block upper triangular matrices). If π is a representation
of GL(n,F ), we let rα(π) denote the Jacquet module of π with respect to Lα.

We now give the Langlands classification for GL(n,F ) and SO(2n+1, F ) (cf. [B-W],[Sil1];
for real groups, see [Lan1]). As in [Zel], let ν = |det| on GL(n,F ) (with the value of n
clear from context). Suppose that δ is an irreducible essentially square integrable repre-
sentation of GL(n,F ). Then, there is an ε(δ) ∈ R such that ν−ε(δ)δ is unitarizable. For
GL(n,F ), let δ1, . . . , δk be irreducible essentially square integrable representations satisfying
ε(δ1) ≤ · · · ≤ ε(δk). Then, δ1 × · · · × δk has a unique irreducible subrepresentation which we
denote by L(δ1, . . . , δk; τ ). For SO(2n+ 1, F ), let δ1, . . . , δk be irreducible essentially square
integrable representations satisfying ε(δ1) ≤ · · · ≤ ε(δk) < 0 and τ a tempered representation
of SO(2(n − m) + 1, F ). Then, δ1 × · · · × δk o τ has a unique irreducible subrepresenta-
tion which we denote by L(δ1, . . . , δk; τ ). Note that we use Langlands classification in the
subrepresentation setting rather than the quotient setting for the following reason: in the
subrepresentation setting, δ1 ⊗ · · · ⊗ δk ⊗ τ will lie in the appropriate Jacquet module of
L(δ1, . . . , δk; τ ) (by Frobenius reciprocity).

We now recall some structure theory related to Jacquet modules.

Definition 2.1. (1) If τ is a representation of GL(n,F ), set

m∗τ =
n∑

i=0

r(i)τ

(2) If π is a representation of SO(2n + 1, F ), set

µ∗π =

n∑

i=0

s(i)π.

If τ1 and τ2 are representations of GL(n1, F ), GL(n2, F ), respectively, let s(τ1⊗τ2) = τ2⊗τ1
and m(τ1 ⊗ τ2) = τ1 × τ2. If τ is a representation of GL(n,F ) and ϑ is a representation of
SO(2m+1, F ), define o on (R⊗R)⊗ (R⊗R[S]) by (τ1 ⊗ τ2)o (τ ⊗ϑ) = (τ1× τ )⊗ (τ2 oϑ).
Set M∗

S = (m⊗ 1) ◦ ( ˜⊗m∗) ◦ s ◦m∗ ( ˜ denotes contragredient).

Theorem 2.2 (Tadić). If τ is a representation of GLn(F ) and ϑ a representation of Sm,
then

µ∗(τ o ϑ) = M∗
S(τ ) o µ∗(ϑ).

Proof. See [Tad1]. �
We mention the counterpart for general linear groups: if we define × on R ⊗R by (τ1 ⊗

τ2) × (τ ′1 ⊗ τ ′2) = (τ1 × τ ′1)⊗ (τ2 × τ ′2), then m∗(π1 × π2) = m∗(π1) ×m∗(π2). See section 1.7
of [Zel].
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2.2. Decomposition of StGL(2) × trivGL(2) o 1. We analyze the induced representation
StGL(2) × trivGL(2) o 1 using Jacquet module methods (cf. [Tad2],[Jan3],[B-J1],[Muić], etc.,
for similar arguments). Before getting into the analysis, we first introduce a couple of
representations which will occur.

By Theorem 4.5 [Jan1] or Lemma 4.2 [Jan3], the degenerate principal series trivGL(2) o
trivSO(3) is irreducible. Therefore, by duality (cf. [Aub],[S-S]) or the Iwahori-Matusmoto
involution, we see that

S = StGL(2) o StSO(3)

is an irreducible tempered representation. Similarly, the degenerate principal series trivGL(2)o
1 decomposes as L(ν−

1
2 , ν−

1
2 ) + L(ν−

1
2 ;StSO(3)) (cf. Theorem 4.1 [Jan1] or Proposition 3.6

[Jan3]). Taking duals,
StGL(2) o 1 = T1 + T2,

where s(1)T1 = ν
1
2 ⊗ L(ν−

1
2 ) and s(1)T2 = ν

1
2 ⊗ L(ν−

1
2 ) + 2ν

1
2 ⊗ StSO(3). We summarize:

Lemma 2.3. (1) ν−
1
2 o trivSO(3) = L(ν−

1
2 , ν−

1
2 ) + T1

(2) trivGL(2) o 1 = L(ν−
1
2 , ν−

1
2 ) + L(ν−

1
2 ;StSO(3))

(3) ν−
1
2 o StSO(3) = L(ν−

1
2 ;StSO(3)) + T2

(4) StGL(2) o 1 = T1 + T2

The Jacquet modules for the irreducible representations appearing above are given in the
table at the end of this section.

Lemma 2.4. We have the following:

(1) ν−
1
2 o L(ν−

1
2 ;StSO(3)) = L(ν−

1
2 , ν−

1
2 ;StSO(3))

(2) ν−
1
2 o L(ν−

1
2 , ν−

1
2 ) = L(ν−

1
2 , ν−

1
2 , ν−

1
2 ) + L(ν−

1
2 ;T2)

(3) StGL(2) o L(ν−
1
2 ) = L(ν−

1
2 ;T1) + L(ν−

1
2 ;T2)

(4) ν−
1
2 o T1 = L(ν−

1
2 ;T1)

(5) ν−
1
2 o T2) = L(ν−

1
2 ;T2) + S.

The Jacquet modules for the irreducible representations appearing above are given in the table
at the end of this section.

Proof. For (1), observe that since s(1)L(ν−
1
2 ;StSO(3)) = ν−

1
2 ⊗ StSO(3), by Theorem 2.2,

s(1)ν
− 1

2 o L(ν−
1
2 ;StSO(3)) = ν−

1
2 ⊗ L(ν−

1
2 ;StSO(3)) + ν

1
2 ⊗ L(ν−

1
2 ;StSO(3))

+ν−
1
2 ⊗ ν−

1
2 o StSO(3)

= 2ν−
1
2 ⊗ L(ν−

1
2 ;StSO(3)) + ν−

1
2 ⊗ T2 + ν

1
2 ⊗ L(ν−

1
2 ;StSO(3))

(cf. Lemma 2.3). Now,

s(1,1,1)ν
− 1

2 ⊗ L(ν−
1
2 ;StSO(3)) = ν−

1
2 ⊗ ν−

1
2 ⊗ ν

1
2

s(1,1,1)T2 = ν−
1
2 ⊗ ν

1
2 ⊗ ν−

1
2 + 2ν−

1
2 ⊗ ν

1
2 ⊗ ν

1
2

s(1,1,1)ν
1
2 ⊗ L(ν−

1
2 ;StSO(3)) = ν

1
2 ⊗ ν−

1
2 ⊗ ν

1
2 .
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Let π1 be an irreducible subquotient of ν−
1
2 o L(ν−

1
2 ;StSO(3)) such that s(1)π1 ≥ ν−

1
2 ⊗

L(ν−
1
2 ;StSO(3)). Observe that the only irreducible representation of GL(3, F ) having ν−

1
2 ⊗

ν−
1
2⊗ν 1

2 in its Jacquet module is L(ν−
1
2 , ν−

1
2 , ν

1
2 ) = ν−

1
2×L(ν−

1
2 , ν

1
2 ). Since r(1,1)L(ν−

1
2 , ν−

1
2 , ν

1
2 )

= 2ν−
1
2 ⊗ ν−

1
2 ⊗ ν

1
2 + ν−

1
2 ⊗ ν

1
2 ⊗ ν−

1
2 , we have s(1,1,1)π ≥ 2ν−

1
2 ⊗ ν−

1
2 ⊗ ν

1
2 + ν−

1
2 ⊗ ν

1
2 ⊗

ν−
1
2 . Therefore, s(1)π1 ≥ 2ν−

1
2 ⊗ L(ν−

1
2 ;StSO(3)) + ν−

1
2 ⊗ T2. However, this then tells

us s(1,1,1)π1 ≥ ν−
1
2 ⊗ ν

1
2 ⊗ ν

1
2 (consider s(1,1,1)ν

− 1
2 ⊗ T2). Now, the only irreducible rep-

resentation of GL(3, F ) having ν−
1
2 ⊗ ν

1
2 ⊗ ν

1
2 in its Jacquet module is L(ν−

1
2 , ν

1
2 , ν

1
2 ) =

L(ν−
1
2 , ν

1
2 ) × ν

1
2 . Since r(1,1)L(ν−

1
2 , ν

1
2 , ν

1
2 ) = 2ν−

1
2 ⊗ ν

1
2 ⊗ ν

1
2 + ν

1
2 ⊗ ν−

1
2 ⊗ ν

1
2 , we have

s(1,1,1)π1 ≥ ν
1
2 ⊗ ν−

1
2 ⊗ ν

1
2 . Therefore, s(1)π1 also contains ν

1
2 ⊗ L(ν−

1
2 ;StSO(3)). As s(1)π1

accounts for all of s(1)ν
− 1

2 o L(ν−
1
2 ;StSO(3)), we see that π1 is the only component, i.e.,

ν−
1
2 o L(ν−

1
2 ;StSO(3)) is irreducible. Further, since

ν−
1
2 o L(ν−

1
2 ;StSO(3)) ↪→ ν−

1
2 × ν−

1
2 o StSO(3)

has L(ν−
1
2 , ν−

1
2 ;StSO(3)) as unique irreducible subrepresentation (by the Langlands classifi-

cation), we must have

ν−
1
2 o L(ν−

1
2 ;StSO(3)) = L(ν−

1
2 , ν−

1
2 ;StSO(3)),

as claimed.
For (2), since s(1)L(ν−

1
2 , ν−

1
2 ) = 2ν−

1
2 ⊗ L(ν−

1
2 ) + ν−

1
2 ⊗ StSO(3), Theorem 2.2 tells us

s(1)ν
− 1

2 o L(ν−
1
2 , ν−

1
2 ) = ν−

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + 2ν−

1
2 ⊗ ν−

1
2 o L(ν−

1
2 )

+ν−
1
2 ⊗ ν−

1
2 o StSO(3)

= 3ν−
1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + ν−

1
2 ⊗ L(ν−

1
2 ;StSO(3)) + 2ν−

1
2 ⊗ T1

+ν−
1
2 ⊗ T2 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ),

by Lemma 2.3. Let π1 be an irreducible subquotient of ν−
1
2 oL(ν−

1
2 , ν−

1
2 ) such that s(1)π1 ≥

ν−
1
2 ⊗ L(ν−

1
2 , ν−

1
2 ). Then, s(1,1,1)π1 ≥ ν−

1
2 ⊗ ν−

1
2 ⊗ ν−

1
2 . By Frobenius reciprocity,

HomG(π1, ν
− 1

2 × ν−
1
2 × ν−

1
2 o 1) ∼= HomA(s(1,1,1)π1, ν

− 1
2 ⊗ ν−

1
2 ⊗ ν−

1
2 ),

which is nonzero by a central character argument (cf. Lemma 8.2 [Gus]). Therefore,

π1 ↪→ ν−
1
2 × ν−

1
2 × ν−

1
2 o 1.

Since ν−
1
2 × ν−

1
2 × ν−

1
2 o 1 has unique irreducible subrepresentation L(ν−

1
2 , ν−

1
2 , ν−

1
2 ) (by

the Langlands classification), we see that π1 = L(ν−
1
2 , ν−

1
2 , ν−

1
2 ). Now, L(ν−

1
2 , ν−

1
2 , ν−

1
2 ) =

trivGL(2) o trivSO(3) and has

s(1)L(ν−
1
2 , ν−

1
2 , ν−

1
2 ) = 3ν−

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + ν−

1
2 ⊗ L(ν−

1
2 ;StSO(3)) + 2ν−

1
2 ⊗ T1

(which follows from Theorem 2.2 and Lemma 2.3). This leaves ν−
1
2 ⊗T2 and ν

1
2 ⊗L(ν−

1
2 , ν−

1
2 )

unaccounted for. An s(1,1,1) argument like that used for part (1) shows that if π2 is the irre-

ducible subquotient with s(1)π2 ≥ ν−
1
2 ⊗T2, then s(1)π2 must also contain ν

1
2 ⊗L(ν−

1
2 , ν−

1
2 ).
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Further, by central character considerations like those used above,

0 6= HomM (rM,Gπ2, ν
− 1

2 ⊗ T2) ∼= HomG(π2, ν
− 1

2 o T2),

so π2 ↪→ ν−
1
2 o T2. Thus, the Langlands classification tells us π2 = L(ν−

1
2 ;T2), as claimed.

We now turn to (3). By Theorem 2.2, we have

s(1)StGL(2) o L(ν−
1
2 ) = 2ν

1
2 ⊗ ν−

1
2 o L(ν−

1
2 ) + ν−

1
2 ⊗ StGL(2) o 1

= 2ν
1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + 2ν

1
2 ⊗ T1 + ν−

1
2 ⊗ T1 + ν−

1
2 ⊗ T2

by Lemma 2.3. Observe that L(ν−
1
2 ;T1) is the unique irreducible subrepresentation of ν−

1
2 o

T1 (by the Langlands classification) and s(1)L(ν−
1
2 ;T1) does not contain ν−

1
2 ⊗ T2 (since

s(1)ν
− 1

2 o T1 does not–an easy calculation, or cf. Lemma 3.4 [Jan4]). The corresponding

statement holds for L(ν−
1
2 ;T2). Let π1 be the component of StGL(2) o L(ν−

1
2 ) such that

s(1)π1 ≥ ν−
1
2 ⊗ T1. Then, s(1)π 6≥ ν−

1
2 ⊗ T2. Therefore, by the same central character

considerations used in (2), we have π1 ↪→ ν−
1
2 o T1, hence π1 = L(ν−

1
2 ;T1). Similarly,

we see π2 = L(ν−
1
2 ;T2) is also a component of StGL(2) o L(ν−

1
2 ). Further, since s(1)π2 =

ν−
1
2 ⊗ T2 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) (cf. (2) above), we have

s(1)π1 ≤ ν−
1
2 ⊗ T1 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + 2ν

1
2 ⊗ T1.

Again, an s(1,1,1) argument like that used in part (1) tells us

s(1)π1 = ν−
1
2 ⊗ T1 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + 2ν

1
2 ⊗ T1.

Thus, π1 and π2 are the only components, so

StGL(2) o L(ν−
1
2 ) = L(ν−

1
2 ;T1) + L(ν−

1
2 ;T2),

as claimed.
For (4) and (5), note that the duals (in the sense of [Aub],[S-S]) to ν−

1
2 oT1 and ν−

1
2 oT2

are ν
1
2 o L(ν−

1
2 ;StSO(3)) and ν

1
2 o L(ν−

1
2 , ν−

1
2 ), resp., which have been analyzed in (1) and

(2). As ν
1
2 o L(ν−

1
2 ;StSO(3)) is irreducible, so is ν−

1
2 o T1. Therefore,

ν−
1
2 o T1 = L(ν−

1
2 ;T1).

Similarly, as ν
1
2 o L(ν−

1
2 , ν−

1
2 ) has two irreducible subquotients, so does ν−

1
2 o T2. One of

them must be L(ν−
1
2 ;T2). Since trivGL(2) o trivSO(3) is the other irreducible subquotient of

ν
1
2 oL(ν−

1
2 , ν−

1
2 ), its dual–i.e., StGL(2) oStSO(3) = S–is the other irreducible subquotient of

ν−
1
2 o T2. This finishes the proof of the lemma. �

Theorem 2.5.

StGL(2) × trivGL(2) o 1 = L(ν−
1
2 , ν−

1
2 ;T1) + L(ν−

1
2 , ν−

1
2 ;T2) + L(ν−

1
2 ;S)

The Jacquet modules of the components are given in the table at the end of this section.
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Proof. By Lemma 2.3,

StGL(2) × trivGL(2) o 1 = StGL(2) o L(ν−
1
2 , ν−

1
2 ) + StGL(2) o L(ν−

1
2 ;StSO(3)).

Thus, it suffices to analyze these two induced representations.
Let us start with StGL(2) o L(ν−

1
2 ;StSO(3)). By Theorem 2.2,

s(1)StGL(2) o L(ν−
1
2 ;StSO(3)) = 2ν

1
2 ⊗ ν−

1
2 o L(ν−

1
2 ;StSO(3)) + ν−

1
2 ⊗ StGL(2) o StSO(3)

= 2ν
1
2 ⊗ L(ν−

1
2 , ν−

1
2 ;StSO(3)) + ν−

1
2 ⊗ S

by Lemma 2.4. Now, let π1 be a component such that s(1)π1 ≥ ν
1
2 ⊗ L(ν−

1
2 , ν−

1
2 ;StSO(3)).

Then,

s(1,1,1)π1 ≥ ν
1
2 ⊗ ν−

1
2 ⊗ ν−

1
2 ⊗ StSO(3)

⇓
s(3)π1 ≥ L(ν−

1
2 , St(GL(2)) ⊗ StSO(3),

since L(ν−
1
2 , StGL(2)) = ν−

1
2 × StGL(2) is the only irreducible representation of GL(3, F )

containing ν
1
2 ⊗ν− 1

2 ⊗ν− 1
2 in its Jacquet module. Now, the Jacquet module of L(ν−

1
2 , StGL(2))

also contains ν−
1
2 ⊗ ν

1
2 ⊗ ν−

1
2 . Therefore,

s(1,1,1)π1 ≥ ν−
1
2 ⊗ ν

1
2 ⊗ ν−

1
2 ⊗ StSO(3)

⇓
s(1)π1 ≥ ν−

1
2 ⊗ S.

Thus, there is only the single component π1, i.e., StGL(2) oL(ν−
1
2 ;StSO(3)) is irreducible. By

the now usual central character considerations, π1 ↪→ ν−
1
2 oS. Therefore, by the Langlands

classification,

StGL(2) o L(ν−
1
2 ;StSO(3)) = π1 = L(ν−

1
2 ;S).

We now turn to π = StGL(2) o L(ν−
1
2 , ν−

1
2 ). By Theorem 2.2,

s(1)StGL(2) o L(ν−
1
2 , ν−

1
2 ) = 2ν

1
2 ⊗ ν−

1
2 o L(ν−

1
2 , ν−

1
2 ) + 2ν−

1
2 ⊗ StGL(2) o L(ν−

1
2 )

+ν−
1
2 ⊗ StGL(2) o StSO(3)

= 2ν
1
2 ⊗ L(ν−

1
2 , ν−

1
2 , ν−

1
2 ) + 2ν

1
2 ⊗ L(ν−

1
2 ;T2)

+2ν−
1
2 ⊗ L(ν−

1
2 ;T1) + 2ν−

1
2 ⊗ L(ν−

1
2 ;T2) + ν−

1
2 ⊗S

by Lemma 2.4. We observe that the only terms of the form ν−
1
2 ⊗ ν−

1
2 ⊗ τ (τ irreducible) in

s(1,1)π are 2ν−
1
2⊗ν− 1

2⊗T1 and 2ν−
1
2⊗ν− 1

2⊗T2. Therefore, by central character considerations,

0 6= HomM(rM,Gπ, ν
− 1

2 ⊗ ν−
1
2 ⊗ Ti) ∼= HomG(π, ν−

1
2 × ν−

1
2 o Ti)

for some i. That is, there is component π1 of π such that πi ↪→ ν−
1
2 × ν−

1
2 o Ti; by the

Langlands classification, π1 = L(ν−
1
2 , ν−

1
2 ;Ti). This shows L(ν−

1
2 , ν−

1
2 ;Ti) is a component

of StGL(2) oL(ν−
1
2 , ν−

1
2 ) for some i. We next show that this actually holds for both i = 1, 2.

Observe that
ν−

1
2 o L(ν−

1
2 ;Ti) ↪→ ν−

1
2 × ν−

1
2 × Ti.
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As L(ν−
1
2 , ν−

1
2 ;Ti) is the unique irreducible subrepresentation of ν−

1
2 × ν−

1
2 × Ti, we must

have
L(ν−

1
2 , ν−

1
2 ;Ti) ↪→ ν−

1
2 o L(ν−

1
2 ;Ti).

Therefore, s(1)L(ν−
1
2 , ν−

1
2 ;Ti) ≤ s(1)ν

− 1
2 oL(ν−

1
2 ;Ti). Now, by Theorem 2.2 and Lemma 2.4,

s(1)ν
− 1

2 o L(ν−
1
2 ;T1) = ν−

1
2 ⊗ L(ν−

1
2 ;T1) + ν

1
2 ⊗ L(ν−

1
2 ;T1) + ν−

1
2 ⊗ ν−

1
2 o T1

+2ν
1
2 ⊗ ν−

1
2 o T1 + ν−

1
2 o L(ν−

1
2 , ν−

1
2 )

= 2ν−
1
2 ⊗ L(ν−

1
2 ;T1) + 3ν

1
2 ⊗ L(ν−

1
2 ;T1) + ν

1
2L(ν−

1
2 , ν−

1
2 , ν−

1
2 )

+ν
1
2 ⊗ L(ν−

1
2 ;T2)

and

s(1)ν
− 1

2 o L(ν−
1
2 ;T2) = ν−

1
2 ⊗ L(ν−

1
2 ;T2) + ν

1
2 ⊗ L(ν−

1
2 ;T2) + ν−

1
2 ⊗ ν−

1
2 o T2

+ν
1
2 ⊗ ν−

1
2 o L(ν−

1
2 , ν−

1
2 )

= 2ν−
1
2 ⊗ L(ν−

1
2 ;T2) + 2ν

1
2 ⊗ L(ν−

1
2 ;T2) + ν−

1
2 ⊗ S

+ν
1
2 ⊗ L(ν−

1
2 , ν−

1
2 , ν−

1
2 ).

Suppose, e.g., π1 = L(ν−
1
2 , ν−

1
2 ;T1). The above calculations then show ν−

1
2 ⊗ L(ν−

1
2 ;T2) 6≤

s(1)π1. So, we let π2 be a component such that s(1)π2 ≥ ν−
1
2 ⊗ L(ν−

1
2 ;T2). The same central

character/Frobenius reciprocity argument used above then tells us π2 ↪→ ν−
1
2 o L(ν−

1
2 ;T2),

hence π2 = L(ν−
1
2 , ν−

1
2 ;T2). We note that the same considerations would apply if we started

with π1 = L(ν−
1
2 , ν−

1
2 ;T2). Thus, both L(ν−

1
2 , ν−

1
2 ;T1) and L(ν−

1
2 , ν−

1
2 ;T2) are components

of StGL(2) o L(ν−
1
2 , ν−

1
2 ), as claimed.

It remains to show that L(ν−
1
2 , ν−

1
2 ;T1) and L(ν−

1
2 , ν−

1
2 ;T2) are the only components. This

may be done using the same sort of s(1,1,1) considerations applied in showing the irreducibility

of StGL(2) o L(ν−
1
2 ;StSO(3)). �

Jacquet modules:

s(1)L(ν−
1
2 ;S) = ν−

1
2 ⊗ S + 2ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ;StSO(3))

s(1)L(ν−
1
2 , ν−

1
2 ;T1) = 2ν−

1
2 ⊗ L(ν−

1
2 ;T1) + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 , ν−

1
2 )

s(1)L(ν−
1
2 , ν−

1
2T2) = 2ν−

1
2 ⊗ L(ν−

1
2 ;T2) + ν−

1
2 ⊗ S + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 , ν−

1
2 ) + 2ν

1
2 ⊗ L(ν−

1
2 ;T2)

s(1)L(ν−
1
2 , ν−

1
2 , ν−

1
2 ) = 3ν−

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + ν−

1
2 ⊗ L(ν−

1
2 ;StSO(3)) + 2ν−

1
2 ⊗ T1

s(1)L(ν−
1
2 , ν−

1
2 ;StSO(3)) = 2ν−

1
2 ⊗ L(ν−

1
2 ;StSO(3)) + ν−

1
2 ⊗ T2 + ν

1
2 ⊗ L(ν−

1
2 ;StSO(3))

s(1)L(ν−
1
2 ;T1) = ν−

1
2 ⊗ T1 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + 2ν

1
2 ⊗ T1

s(1)L(ν−
1
2 ;T2) = ν−

1
2 ⊗ T2 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 )

s(1)S = 2ν
1
2 ⊗ L(ν−

1
2 ;StSO(3)) + ν

1
2 ⊗ T1 + 3ν

1
2 ⊗ T2

s(1)L(ν−
1
2 , ν−

1
2 ) = 2ν−

1
2 ⊗ L(ν−

1
2 ) + ν−

1
2 ⊗ StSO(3)

s(1)L(ν−
1
2 ;StSO(3)) = ν−

1
2 ⊗ StSO(3)

s(1)T1 = ν
1
2 ⊗ L(ν−

1
2 )

s(1)T2 = ν
1
2 ⊗ L(ν−

1
2 ) + 2ν

1
2 ⊗ StSO(3)
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Remark 2.6. The calculations done in this section can be generalized to (ρ, σ) reducibility
at 1/2 (cf. [Tad2] for more details).

2.3. Calculation of the Arthur R-group. We now calculate the Arthur R-group for
StGL(2) × trivGL(2) o 1. Now, σ = StGL(2) ⊗ trivGL(2) is a representation of the standard

parabolic subgroup with Levi factor M ∼= GL(2, F ) × GL(2, F ) ⊂ SO(9, F ). Then, M̂ ∼=
GL(2,C) ×GL(2,C) ⊂ Sp(8,C). Thus, the associated A-parameter

ψ : WF × SL(2,C) × SL(2,C) −→ M̂ ⊂ Sp(8,C)

may be determined from [J-S]. It has the form

ψ = (1 ⊗ S2 ⊗ S1) ⊕ (1 ⊗ S1 ⊗ S2) ⊕ (1 ⊗ S1 ⊗ S2) ⊕ (1 ⊗ S2 ⊗ S1),

where 1 denotes the trivial representation ofWF and Sn the standard irreducible n-dimensional
representation of SL(2,C). In particular, S1 is the trivial representation and S2 may be cho-
sen to have S2(x) = x for x ∈ SL(2,C). Thus,

imageψ =








X1

X2
τX−1

2
τX−1

1


 |X1,X2 ∈ SL(2,C)




,

where τ denotes transpose with respect to the antidiagonal.
Given the form of imageψ, its centralizer has the form

Sψ =




A1 B1

A2 B2

C2 D2

C1 D1


 ,

with Ai, Bi, Ci,Di 2 × 2 matrices. In particular, Wψ,W
0
ψ ⊂W (σ). Let

E =

(
1 0
0 −1

)
,

so that EX = τX−1E for X ∈ SL(2,C) (i.e., E gives the equivalence of representations
S2

∼= τS−1
2 , in the obvious notation). Now,




X1

X2
τX−1

2
τX−1

1







A1 B1

A2 B2

C2 D2

C1 D1




=




A1 B1

A2 B2

C2 D2

C1 D1







X1

X2
τX−1

2
τX−1

1
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immediately gives

XiAi = AiXi
τX−1

i Ci = CiXi

XiBi = Bi
τX−1

i
τX−1

i Di = Di
τX−1

i .

Therefore, by Schur’s lemma,

Ai = λAiI Ci = λCiE

Bi = λBiE Di = λDiI

for scalars λAi , λBi , λCi, λDi (with I the 2 × 2 identity matrix).
Now, to have




λA1I λB1E
λA2I λB2E
λC2E λD2I

λC1E λD1I


 ∈ Sp(8,C),

we must have λAiλCi = λBiλDi = 0 and λAiλDi + λBiλCi = 1. Thus,

Sψ =








λA1I
λA2I

λ−1
A2
I

λ−1
A1
I








∪








λA1I
λB2E

λ−1
B2
E

λ−1
A1
I








∪








λB1E
λA2I

λ−1
A2
I

λ−1
B1
E








∪








λB1E
λB2E

λ−1
B2
E

λ−1
B1
E







.

Therefore, Wψ,σ = Wψ
∼= Z/2Z × Z/2Z and W 0

ψ,σ = W 0
ψ = 1. Thus, the Arthur R-group is

Rψ,σ
∼= Z/2Z × Z/2Z,

as claimed.

3. Action of intertwining operators

In this section, we show that (3) of Properties 1.1 holds for intertwining operators. More
precisely, we show the appropriate generalization to accommodate nontrivial cocycle holds.
Our approach is based on arguments used for Knapp-Stein R-groups (cf. [Keys],[Ke-Sh],[Ban2])
and the adaptations to nontrivial cocycle from [Art3]. We note that the results in this sec-
tion also apply to real groups (noting that the accommodations for nontrivial cocycle are
not needed for real groups).

G, M are as in Section 1.2
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3.1. Actions on intertwining algebras. Let σ be an irreducible unitary representation
of M and consider the induced representation I = iG,M(σ). Let V denote the representation
space of I. Let R be a finite group, C[R] its group algebra. Suppose

r 7→ A(r)

extended linearly to C[R] gives a homomorphism of C[R] into the intertwining algebra
C(σ) = Hom(I, I). In particular, this gives rise to a representation of R on V which com-
mutes with the action of G. It follows Ĩ : R×G → Aut(V ) given by

Ĩ(r, g) = A(r)I(g)

is a representation of R ×G on V . We have

(1) Ĩ ∼=
⊕

ρ⊗π

mρ⊗πρ⊗ π,

where ρ runs over the set of equivalence classes of irreducible representations of R and π
runs over the set of equivalence classes of irreducible components of I. The integermρ⊗π ≥ 0

is the multiplicity of ρ⊗ π in Ĩ. Let

(2) V =
⊕

ρ⊗π

mρ⊗π⊕

i=1

Vρ⊗π(i) ∼=
⊕

ρ⊗π

mρ⊗π⊕

i=1

U i
ρ⊗π ⊗ V i

ρ⊗π

be a decomposition of V into Ĩ-irreducible subspaces corresponding to (1), with U i
ρ⊗π (resp.,

V i
ρ⊗π) an irreducible R-invariant (resp., G-invariant) subspace of Vρ⊗π(i). For an irreducible

component π of I, define

(3) ρπ =
⊕

ρ

mρ⊗πρ.

This representation acts on the space Uπ =
⊕

ρ

⊕mρ⊗π
i=1 U i

ρ⊗π ⊂ V . The spaces V i
ρ⊗π, for all ρ

and i = 1, . . . ,mρ⊗π, are mutually equivalent and we can identify each of them with a space
denoted by Vπ; we write Iρ,i : Vπ −→ V i

ρ⊗π for the maps. From (2),

V ∼=
⊕

ρ⊗π

mρ⊗π⊕

i=1

U i
ρ⊗π ⊗ Vπ =

⊕

π

(⊕

ρ

mρ⊗π⊕

i=1

U i
ρ⊗π

)
⊗ Vπ =

⊕

π

Uπ ⊗ Vπ.

We may describe the isomorphism explicitly: for u ∈ Uπ, write u =
∑

ρ

∑
i uρ,i with uρ,i ∈

U i
ρ⊗π. For v ∈ Vπ, we have u⊗ v ∈ Uπ ⊗ Vπ corresponds to

I(u⊗ v) =
∑

ρ

∑

i

uρ,i ⊗ I−1
ρ,i (v) ∈ V,

which extends to give the isomorphism. It follows that

(4) Ĩ ∼=
⊕

π

ρπ ⊗ π, I ∼=
⊕

π

(dimρπ)π.

For a given π, the space Uπ ⊗Vπ is the π-isotypic subspace of V and therefore is canonically
defined (although Uπ and Vπ are not). The representation ρπ is also canonical. If we want
to fix a decomposition of Uπ ⊗ Vπ into G-irreducible subspaces, we fix an orthonormal basis
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{u1, . . . , uk} of Uπ. Then Uπ ⊗ Vπ = (u1 ⊗ Vπ) ⊕ · · · ⊕ (uk ⊗ Vπ). The action of A(r) on
u⊗ v ∈ u⊗ Vπ is precisely ρπ(r)u⊗ v.

For f ∈ C∞
c (G), define

I(f) =

∫

G

f(g)I(g)dg, π(f) =

∫

G

f(g)π(g)dg.

For v ∈ V , write I−1v =
∑

π

∑
i u

i
π ⊗ viπ, in accordance with the decomposition (4) of Ĩ

(uiπ ⊗ viπ ∈ Uπ ⊗ Vπ). Then, for r ∈ R and f ∈ C∞
c (G), we have

A(r)I(f)v = A(r)

∫

G

f(g)I(g)vdg

=

∫

G

f(g)A(r)I(g)vdg

=

∫

G

f(g)Ĩ(r, g)vdg

=

∫

G

f(g)
∑

π

∑

i

I
(
ρπ(r)u

i
π ⊗ π(g)viπ

)
dg

=
∑

π

∑

i

I
(
ρπ(r)u

i
π ⊗

∫

G

f(g)π(g)viπ

)
dg

=
∑

π

∑

i

I
(
ρπ(r)u

i
π ⊗ π(f)viπ

)

=

(⊕

π

ρπ(r) ⊗ π(f)

)
v.

Notice that all the integrals above are essentially finite sums. It follows that

A(r)I(f) =
⊕

π

ρπ(r) ⊗ π(f).

In particular,

trace(A(r)I(f)) =
∑

π

trace(ρπ(r) ⊗ π(f)) =
∑

π

trace ρπ(r) trace π(f).

We have proved the following:

Lemma 3.1. Let σ be an irreducible admissible unitary representation of M and I = iG,M (σ).
Let R be a finite group. Suppose r 7→ A(r) is a homomorphism of R into a multiplicative
subgroup of C(σ) = Hom(I, I). To each component π of I we can attach in a canonical way
a representation ρπ of R. Then

I =
⊕

π

(dimρπ)π,

where π runs over equivalence classes of irreducible subrepresentations of I. If we define

〈r, π〉 = trace ρπ(r),
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then

(5) trace(A(r)I(f)) =
∑

π

〈r, π〉 trace π(f).

3.2. Standard intertwining operators. Let σ be an irreducible admissible unitary repre-
sentation of M . For w ∈ W (σ), take a representative w̄ ∈ K ⊂ G, a good maximal compact
subgroup. Let A(ν, σ, w̄), ν ∈ a∗

C, be the standard intertwining operator defined in Section
1 of [Sha2]. (For detailed description, see [Sha1].) Then ν 7→ A(ν, σ, w̄) is a meromorphic
function of ν. If A(ν, σ, w̄) is holomorphic at ν = 0, then A(0, σ, w̄) is an intertwining
operator between iG,M(σ) and iG,M(w̄σ). We define a normalized intertwining operator

A′(ν, σ, w̄) = n(ν, σ, w̄)A(σ, w̄),

where n(ν, σ,w) is a normalizing factor. We do not specify the normalizing factor used here,
we just refer to [Art2], Theorem 2.1, for the proof of existence. Set A′(σ, w̄) = A′(0, σ, w̄).
One of the basic properties of normalized operators is

(6) A′(σ, w̄1w̄2) = A′(w̄1σ, w̄2)A
′(σ, w̄2),

where w̄1, w̄2 are representatives of w1, w2 ∈ W (σ). Let 〈, 〉 be the pairing explained in
Section 2 of [Sha1] (also, cf. Section 5.2.1 of [Sil3] and Section 1 of [Art2]). Then the adjoint
operator of A′(σ, w̄) is A′(w̄σ, w̄−1), i.e., for f ∈ iG,M (σ) and f ′ ∈ iG,M (w̄σ), we have

〈A′(σ, w̄)f, f ′〉 = 〈f,A′(w̄σ, w̄−1)f ′〉.
Then, using (6),

〈A′(σ, w̄)f,A′(σ, w̄)f〉 = 〈f,A′(w̄σ, w̄−1)A′(σ, w̄)f〉 = 〈f, f〉.
This tells us that A′(ν, σ, w̄) is holomorphic at 0 and A′(σ, w̄) ∈ HomG(iG,M(σ), iG,M(w̄σ)).

Next, we can associate to A′(σ, w̄) an operator in C(σ), as follows. Since wσ ∼= σ, σ
extends to a representation σw of the smallest group containing M and w̄. Fix such an
extension σw and define

(7) A(σ,w) = σw(w̄)A′(σ, w̄).

Then A(σ,w) ∈ C(σ) and the definition is independent of the representative w̄. Note
that σw(w̄) ∈ HomM(w̄σ, σ). Let w1, w2 ∈ W (σ), with representatives w̄1, w̄2. Since σ is
irreducible, there exists a constant η(w1, w2) such that

σw1w2(w̄1w̄2) = η(w1, w2)σw1(w̄1)σw2(w̄2).

It follows that

(8) A(σ,w1w2) = η(w1, w2)A(σ,w1)A(σ,w2).

Now, let R be a subgroup of W (σ). Equation (8) implies

(9) A(σ, r1r2) = η(r1, r2)A(σ, r1)A(σ, r2), r1, r2 ∈ R.

We will show that (3) of Properties 1.1 hold for R.
If η = 1, then r 7→ A(σ, r) is a representation of R on C(σ) and (5) follows directly.

Assume η splits, i.e., there exists a function ξ : R → C× such that

η(r1, r2) = ξ(r1r2)ξ(r1)
−1ξ(r2)

−1.
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Then ξ(r1r2)
−1A(σ, r1r2) = ξ(r1)

−1A(σ, r1)ξ(r2)
−1A(σ, r2) and r 7→ ξ(r)−1A(σ, r) is a repre-

sentation of R on C(σ). Formula (5) holds for ξ(r)−1A(σ, r) (noting that in this case, the
cocycle is normally absorbed into the normalization so does not appear).

If η does not split, we apply Schur’s theory of projective representations ([C-R], §53, [Sch],
[Art4]). Theorem 53.3 in [C-R] tells us the class {η} has finite order n. From the proof of
the same theorem, the class {η} has a representative α whose values α(r, s) are nth roots of
1 and α(1, 1) = 1; α ∈ {η} means there exists a function ξ : R→ C× such that

η(r1, r2) = α(r1, r2)ξ(r1r2)ξ(r1)
−1ξ(r2)

−1.

Fix ζ, a primitive nth root of 1. For each pair r, s ∈ R, define the integer ar,s by

α(r, s) = ζar,s,

0 ≤ ar,s < n. Let Zα be the cyclic group generated by α. On the set R̃ of all ordered pairs
(r, αk), r ∈ R, αk ∈ Zα, define multiplication by

(r, αk)(s, αl) = (rs, αar,s+k+l).

Then R̃ is a group. (To see associativity, observe that (9) for A′(r) = ξ−1(r)A(σ, r)
gives A′(r1r2) = α(r1, r2)A

′(r1)A
′(r2). Associativity follows from α(r1r2, r3)α(r1, r2) =

α(r1, r2r3)α(r2, r3), which can be obtained easily from (9) for A′(r1r2r3).) The mapping
z 7→ (1, z) is an isomorphism of Zα into the center of R̃. We have

1 → Zα → R̃→ R→ 1.

Define a linear character χ : Zα → C× by χ(αk) = ζk. Define Ã : R̃→ C(σ) by

Ã((r, z)) = χ−1(z)ξ(r)−1A(σ, r),

r ∈ R, z ∈ Zα. Then

Ã((r, αk)(s, αl)) = Ã((rs, αar,s+k+l))

= ζ−ar,s−k−lξ(rs)−1η(r, s)A(σ, r)A(σ, s)

= ζ−ar,s−k−lξ(rs)−1α(r, s)ξ(rs)ξ(r)−1ξ(s)−1A(σ, r)A(σ, s)

= ζ−ar,s−k−lζar,sξ(r)−1ξ(s)−1A(σ, r)A(σ, s)

= Ã((r, αk))Ã((s, αl)).

It follows that r̃ 7→ Ã(r̃), r̃ ∈ R̃, is a homomorphism of R̃ into C(σ) and formula (5) holds
for Ã. In particular, attached to each component π is a representation ρπ of the group R̃.
For r ∈ R, define

〈r, π〉 = trace ρπ((r, 1)).

Lemma 3.1 now implies the following:

Theorem 3.2. With notation as above,

ξ−1(r) trace(A(σ, r)I(f)) =
∑

π

〈r, π〉 traceπ(f).
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3.3. Arthur R-group. We now consider the situation described in Section 1.2. In particu-
lar, ψ is an elliptic A-parameter of M and σ belongs to the A-packet Πψ(M). The group Sψ
(the centralizer in Ĝ of the image of ψ) is a reductive group. It can be shown that Wψ/W

0
ψ is

isomorphic to a subgroup of Wψ; denote this subgroup by Rψ. In addition, it can be shown
that the following exact sequence splits:

1 −→ W 0
ψ −→ Wψ −→ Rψ −→ 1.

Then we have an embedding

1 −→ W 0
ψ,σ −→ Wψ,σ −→ Rψ,σ −→ 1
↓ ↓ ↓

1 −→ W 0
ψ −→ Wψ −→ Rψ −→ 1

of short exact sequences. If Rψ,σ ⊂ W (σ), we can apply results of sections 3.1 and 3.2 to
R = Rψ,σ.

Example 3.3. We look at what happens in the example from chapter 2. In this case,
π = IndGP (σ) = StGL(2) × trivGL(2) o 1 and W (σ) = {1, w1, w2, w3}, where the elements of
W (σ) are most easily described by their actions: if m = diag(X1,X2, 1,

τX−1
2 , τX−1

1 ) ∈ M
(block diagonal matrix in SO(9, F )), then w1 · m = diag(X1,

τX2, 1,X2,
τX1), w2 · m =

diag(τX1,X2, 1,
τX2,X1), and w3 ·m = diag(τX1,

τX2, 1,X2,X1).
Recall that we have (cf. proof of Theorem 2.5)

StGL(2) o L(ν−
1
2 , ν−

1
2 ) = L(ν−

1
2 , ν−

1
2 ;T1) ⊕ L(ν−

1
2 , ν−

1
2 ;T2)

StGL(2) o L(ν−
1
2 ;StSO(3)) = L(ν−

1
2 ;S).

We may also determine that

trivGL(2) o T1 = L(ν−
1
2 , ν−

1
2 ;T1)

trivGL(2) o T2 = L(ν−
1
2 , ν−

1
2 ;T2) ⊕ L(ν−

1
2 ;S)

by a similar calculation (though made much easier since the Jacquet modules of the various
subquotients are already known).

We know StGL(2)o1 = T1⊕T2 and trivGL(2)o1 = L(ν−
1
2 , ν−

1
2 )⊕L(ν−

1
2 ;StSO(3)) (cf. Lemma

2.3). We use normalizations so that the nontrivial normalized standard intertwining operator
for StGL(2)o1 acts trivially on T2 (generic component) and nontrivially on T1; for trivGL(2)o
1, we normalize so that the nontrivial normalized standard intertwining operator acts trivially
on L(ν−

1
2 , ν−

1
2 ) (K-spherical component) and nontrivially on L(ν−

1
2 ;StSO(3)). We then use

corresponding normalizations for StGL(2) × trivGL(2) o 1 (so that A(σ,w1) acts trivially on

StGL(2) o L(ν−
1
2 , ν−

1
2 ) and nontrivially on StGL(2) o L(ν−

1
2 ;StSO(3)), etc.). The action of

normalized standard intertwining operators is summarized below:

A(σ, 1) A(σ,w1) A(σ,w2) A(σ,w3)

π1 = L(ν−
1
2 , ν−

1
2 ;T1) 1 1 1 1

π2 = L(ν−
1
2 , ν−

1
2 ;T2) 1 1 −1 −1

π3 = L(ν−
1
2 ,S) 1 −1 1 −1
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If we let ρ0 denote the trivial character of R = W (σ) and ρi for i = 1, 2, 3 the nontrivial
character which is trivial on wi, then the above implies ρπ1 = ρ1, ρπ2 = ρ0 and ρπ3 = ρ2

(with mρ4⊗π = 0 for all π). If we twist the normalizations by a character ρ of R, there is a
corresponding twist in the ρπi .
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