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ABSTRACT. For the special orthogonal group G = SO(2n + 1) over a p-adic ficld,
we consider a disercte series representation of a standard Levi subgroup of G. We
prove that the Arthur R-group and the classical R-group of 7w are isomorphic. If
@ is generic, we consider the Aubert involution 7. Under the assumption that 7
is unitary, we prove that the Arthur R-group of 7 is isomorphic to the R-group
of 7 defined in [5, 6]. This is done by establishing the connection hetween the A-
parameters ol # and . We prove that the A-parameter of 7 is obtained from the

A-parameter of m by interchanging the two SL(2, C) components.

1. INTRODUCTION

Let GG be a connected reductive quasi-split algebraic group defined over a p-adic
field F. Let M be a Levi subgroup of a parabolic subgroup P of (¢ defined over F.

Suppose 7 is a discrete series representation of M(F), and I(w) = 1 ﬂdﬁﬁ%ﬂ the
representation of G(F') parabolically induced from . The classical R-group R(m)
associated to m has been defined for studying the irreducible composition factors of
I(m). The R-group is a subquotient of the Weyl group and the normalized inter-
twining operators, corresponding to elements of R(7), form a basis of the commuting
algebra Homeg)(I(m). I(m)) |31]. In essence, R(w) is characterized by Plancherel
measures of m. The R-group can also be defined in terms of the L-group and Lang-
lands’ correspondence. In this context, Arthur proposed a conjectural description

of IR-groups for some nontempered unitary representations. On the other hand, the
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classical definition of the Z-group can also be extended to some nontempered unitary
representations. Suppose 7 is a unitary representation such that the Aubert involu-
tion 7 is discrete series. According to |5, 6], it is natural to define R(w) = R(7), and
the R-group R(w) has the right basic properties. We call R(m) the classical R-group
of 7.

Let Wr be the Weil group of F. and Wi = Wp x SLy(C) be the Weil-Deligne
group [34]. Let 'G = HG° x Wy be the L-group of G, c.f |8]. Langlands defined
certain homomorphisms of W}, to G, called L-parameters. The local Langlands
correspondence predicts that the set of equivalence classes of irreducible admissible
representations of G(F') can be partitioned into finite sets, called L-packets. Each
L-packet should be parametrized by an L-parameter of Wy, in accordance with the
natural functorial principle ( see [1]). This is another aspect of the decomposition of a
parabolically induced representation and it is natural to ask what is the corresponding
aspect of the classical R-group. Arthur outlined the answer in [1|. To deal with non-
tempered representations, he first extended the definition of L-parameters to Arthur
parameters (or briefly A-parameters). Then he defined the R-group associated to an
A-parameter and a representation in the Arthur packet of this A-parameter. Arthur
expects that his R-groups should be related intimately to the classical R-groups. For
example, when the L-packet corresponding to the parameter consists of discrete series
representations, then these two R-groups should be the same, This was proved by
Shelstad [29], for real groups, and by Keys [18], when M is a maximal torus over F' and
71 is a unitary character of M (F'). Actually, as long as the Langlands correspondence
is established, the equality of R-groups would follow. as one can see from our proof
of 'T'heorem 3.1, in the case when (' is split over F. Indeed, the Plancherel measures
determine the classical R-group of m. while the Plancherel measures are essentially
determined by Langlands-Shahidi L-functions, On the other hand, one can associate
certain L-functions, called Artin L-functions, to every L-parameter of G (sce |34]).

Under the Langlands correspondence, the Langlands-Shahidi L-functions should be
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equal to the corresponding Artin L-functions. So the Arthur R-group of 7 is expected
to be isomorphic to the classical R-group of . The Langlands correspondence for
G'L, due to Harris and Taylor |11] and Henniart [12], Henniart [13] and the result
of Jiang and Soudry [17] on SO(2n + 1), allow us to prove Arthur's expectation for
SO(2n+ 1). This is our Theorem 3.1.

As Arthur pointed out in [1], things seem to get out of control when we step to the
non-tempered situation. A significant discovery made by Zelevinsky [35] relates a dis-
crete series representation of GL to the corresponding Langlands quotient. These two
representations are associated to each other by Zelevinsky involution. From our point
of view, the link is the following: the L-parameter of the former and the A-parameter
of the latter have the same image in the L-group. Consequently. the Arthur R-groups
for these two representations are equal. Aubert generalized the idea of Zelevinsky
and defined a duality operator [4], for any p-adic group. For GL, Zelevinsky built all
irreducible admissible representations and defined the Zelevinsky involution for every
irreducible admissible representation, by starting with segments. For other classical
groups, segments also have fundamental meaning (see Muic |23]). Though the L-
parameter and A-parameter of m and its Aubert involution generally do not relate
to each other so obviously, there are still important links inside. Moeglin’s work [22]
already provided some evidence. As our first understanding of these matters, we look
in this paper at the simplest case, i.c., the situation when 7 is a generic discrete se-
ries representation (see Theorem 5.3 and Corollary 5.1). To exploit the links between
L-parameters and A-parameters of an irreducible admissible representation and its
Aubert involution. more general situations will be dealt with in our future work.

'Theorem 3.1 and ''heorem 5.3 are our main results. and we will state them here.

We work on SO(2n + 1).

Theorem 1.1. Let ¢ be an elliptic tempered L-parameter of M and w be an clement

of the L-packet of ¢. Assume that all the members of the packel have same Plancherel
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measures. Then the Arthur R-group and the classical R-greup of ™ are isomorphic

and depend only ¢n the L-parameter ¢.

We should point out that the assumption in the theorem on Plancherel measures

for a discrete packet is a conjecture made by Shahidi in [27].

Theorem 1.2. Let 7 be a generic discrete series representation of M(F) and 7 the
Aubert involution of m. Assume 7 is unitary. Then the Arthur R-group and the

classical R-group of © are 1isomorphic.

Let us mention that the representation @ in Theorem 1.2 is generally non-tempered

(see Corollary 4.1). It is tempered only in the case when 7 is supercuspidal, that is,

=

=T.
As we pointed out in the above, the results on Langlands correspondence of Harris
and Taylor [11] and Henniart [12]|, Henniart [13] and the result of Jiang and Soudry
[17] are the main ingredients for T'heorem 3.1. This theorem together with the pre-
cise expressions of L-parameters of a generic discrete representation and its Aubert
involution in Theorem 5.2, implies Theorem 5.3. The computation in Theorem 5.2
of L-parameters is based on the work of Mui¢ [23] and Jiang and Soudry [17].

The proof of Theorem 5.3 is based on the fact that the A-parameters of m and @
have the same image in XG. Actually, Corollary 5.1 proves that the A-parameter of
7 is obtained from the A-parameter of @ by switching the two SL(2, C) components.

We state Corollary 5.1 here.

Corollary 1.1. Let 7 be a generic discrete series representation of G(F') = SO(2n+
1,F). Let ¥ : W x SL(2,C) x SL(2,C) — G be the A-parameter ¢f T and W the

A-parameter of . Then,

-

(w. x,y) = Y(w, y. ).

In particular, v and ¥ have the same image in 'G.
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This corollary is related to a general conjecture on the action of the Aubert in-
volution on A-packets. Barbasch conjectured that the Aubert involution sends an
A-packet to an A-packet. This raises the question of the action of the involution on
A-parameters. 1t is conjectured that the involution acts on A-parameters of GG by in-
terchanging two copies of SL(2, C). Although this conjecture was known previously,
the precise statement is due to Hiraga [14].

We now give a short summary of the paper. In Section 2, we recall some basic
definitions and properties of L-parameters, A-parameters, and Arthur R-groups. In
Section 3, we prove T'heorem 3.1, after a lemma on the correspondence of Weyl groups
and one on Artin L-functions. Langlands data of the Aubert involution of generic
representations are described in Section 4. In Section 5, we first compute the L-
parameters of generic discrete representations and their Aubert involutions and then
prove Theorem 5.3.

Ackncwledgment. We thank Freydoon Shahidi for suggesting this subject and
providing advice as needed. Thanks are also due to Alan Roche, for a comment
on our proof of a lemma about Artin L-functions, and to the referee, for valuable
comments. The first named author thanks Dinakar Ramakrishnan for interesting
discussions, which motivated her to study Arthur's R-groups. The second named
author would also like to thank Freydoon Shahidi for his hospitality during her one
week’s visiting Purdue University which led to this work, and to thank CRM for its

hospitality where this work is done.

2. L-PARAMETERS AND A-PARAMETERS

In this section. we recall some basic definitions and properties of L-parameters,
A-parameters and Arthur R-groups. Our presentation follows Arthur’s paper [1].

Let F' be a nonarchimedean local field of characteristic zero. Wy the Weil group of
F, Wi = Wpg x SLy(C) the Weil-Deligne group of F. Let r be a finite dimensional

semisimple continuous complex representation of Wy, and V' the representation space
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of r. One associates to r a complex function L(s,7), called Artin L-function, and
e-factor e(s. r. r) with 9r a fixed additive character of F. called Artin e-factor. The

Artin L-function is defined by
L(s,r) = det(] — r(dp)g * VIr) 1,

where @ is a Frobenius element of Wy, I is the inertia group of Wy, V¥ is the
subspace of V' pointwise fixed by the action of I, and ¢ is the cardinality of the residue
field of F'. Every irreducible finite dimensional continuous complex representation of

7o is of the form of r ® S,, with r an irreducible representation of Wr and S, the n
dimensional irreducible complex representation of SL,(C). One can define the Artin

L-function associated to r ® S, by
L(s,r®S,) = L(s+ (n—1)/2,r).

Let G be a quasi-split connected reductive algebraic group defined over F'. We
define the L-group by
G = g° x Wy,

where 1G° is the connected reductive complex group whose root datum is dual to
that of G. The action of Wg on 1G° is induced from the action of the Galois group
Gal(F'/F) on G, where F is the algebraic closure of #' (see [8]).

We fix a maximal torus 7" and a Borel subgroup B of (¢ containing 7T'. both defined
over F. We also fix a maximal torus T and a Borel subgroup “B° containing “T"°
of 1G°, both invariant under the action of Wy corresponding to the duality between
the root datum of G' and 4G°. Let (T, G) be the roots of T in G, X(¥I°,LG°) the
roots of 1" in 1G°. 1t is well known that the two Weyl groups are isomorphic, i.e.
W(T,G) ~ W (¥ LG?), under the map sending s, to s,v. Here o € (U1, LG°) is
the coroot of a € (T, ) and s,, s4v are the corresponding reflections on the spaces
generated by (T, G) and X("T°,“G®) respectively. Let Ty be the maximal split torus

of G contained in 7', and “T¢ the maximal subtorus pointwise fixed by Wy contained
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in ’T°. Then W ("T¢,2G°) is the subgroup of W (T, 2G°) consisting of the clements
fixed by Wr. So, we have an isomorphism between W (T, G) and W (IT’¢,£Ge).

Let M be a Levi subgroup of a standard parabolic subgroup of G defined over I
with respect to B. and A the split component of Z(M), the center of M. Let ‘M
denote the L-group of M. Then "M is a Levi subgroup of G, by the bijection 8]
between the set of conjugacy classes of the parabolic subgroups over F' of G and the
set of conjugacy (in G°) classes of parabolic subgroups of “G. Let “A° be the maximal
torus of the center of “M?°, and U be the maximal subtorus of £A° pointwise fixed by
Wg. It is well known that W(A, G) can be identified with the subgroup of W (1y, G)
whose elements stabilize the set of positive roots of 1; in M with respect to the Borel
subgroup B. Indeed, let W'(Ty, G) be the subgroup of W(T,, i) consisting of the
elements which stabilize ¥(Ty, M), the roots of T; in M. Then W (T, M) is a normal
subgroup of W/(Ty, G). The group W(A. G) is isomorphic to W'(Ty, G)/W (Ty, M).
By Lemma 1.1.2 in [9], every coset of W/(Ty, G)/W (T4, M) has a unique element
which stabilizes the set of positive roots of T in M. Let W (T, G) be the set of all
such elements. 'Then W (13, i) is the subgroup of W (1, ) whose elements stabilize
the set of the positive roots of Ty in M. So, W'(T,, G) = W(Ty, M) x WH(T,, ).
Therefore, W (A, G) is identified with W+(T, ). The same is true for W (U."G?)
in W ("T'¢,“G®). So the isomorphism between W (T, G) and W ("T¢,“G°) induces an
isomorphism between W (A, G) and W (U.LG?),

A homomorphism
(;5 : WF b SLQ(C) — i(;r' = L(;O bt WF

which commutes with the projections to W is called a Langlands parameter, or

L-parameter of G, if the conditions 1)-5) on pages 41-42 of |20] are satisfied by ¢.
The parameter ¢ is elliptic. if its image is not contained in any proper Levi subgroup

of *G. Tt is tempered, if the image of the projection of ¢(Wy) to “G® is bounded.

We say that two L-parameters ¢ and ¢’ are equivalent, and write ¢ ~ ¢'. if they are
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conjugate in “G°. We denote by ®(G) the set of equivalence classes of L-parameters
of G.

Let 7 be an irreducible admissible representation of G(/) and r be a continuous
finite dimensional semisimple complex representation of 7. There are a conjectural
L-function L(s, m,r) and e-factor (s, m. r, ¢p) attached to m and r. Here 9 is a fixed
additive character of F. Denote by 11(G) the set of equivalence classes of irreducible
admissible representations of G(F'). Langlands correspondence predicts that 11(G)
can be partitioned into finite sets, called L-packets. such that there is a bijection
between the set of L-packets of G and ¢(G). Let TI4(G) be the L-packet of G
corresponding to an L-parameter ¢. 'T'hen, for any r as above and any m € TI4(G).

one should have the equalities:
L(s,ro¢)= L(s,m.7),
6(8: T qu) - t(S'. T ?/)F)-
It is expected that the L-packet of a tempered L-parameter consists of tempered
representations, that of an elliptic L-parameter consists of discrete series representa-
tions.
To deal with Langlands quotients, Arthur extended the definition of L-parameters

to a kind of more general parameters called Arthur parameters, or A-parameters. A

homomorphism
P Whx SLs(C) - G

commuting with the projections on Wy is called an A-parameter, if

(1) the restriction of 1 to W}, is tempered,

(2) % is also analytic on the second copy of SLy(C).

The definitions of elliptic A-parameters and equivalent A-parameters are similar to
those of L-parameters. We shall write W(G) for the set of equivalence classes of

A-parameters of G. It is expected that, like L-parameters, every A-parameter 1



ARTHUR R-GROUPS AND CLASSICAL R-GROUPS FOR SO(2n + 1) 9

determines a finite set 11,(G) in I1(G), and the map
) = Ty (G)

satisfies some nice properties (see [1]). 1L,(G) is called the Arthur packet (or A-
packet) associated to 1. We should remind that, unlike L-packets, two A-packets
of two distinct A-parameters may have a non-empty intersection. 'lempered L-
parameters are naturally embedded in ¥(G): a tempered L-parameter ¢ becomes
an A-parameter if we let ¢(w, z,y) = ¢(w, x). And for ¢y € ¥(G), Arthur defined an
L-parameter ¢, by letting

w 172

(1 Boluw,2) = b(w,. )

for every (w.z) € Wg. The map v ~ ¢, is injective, see Proposition 1.3.1 in [3].
Suppose ¢ is the L-parameter of the L-packet containing m. Then % is called the
A-parameter of 7 if ¢y is the L-parameter of m, ie., ¢y = ¢. It is expected that
I1,(G) C I,(G) [1].

Suppose that 1 is an A-parameter which factors through a Levi subgroup ‘M =
EMe x Wi of MG, but not any proper Levi subgroup of “M. Since G is quasi-split
over I, there is a Levi subgroup M of G defined over F' such that “M is the L-group
of M. Therefore, 1 is an elliptic A-parameter of M. Arthur associated to v several
related groups. Let Sy be the centralizer in “G* of the image of 4, and 57, the identity

component of Sy, Ty a maximal torus of S7. Define

Wy = Ns, (Ty)/ Zs,(Ty).
Wy = Nsg(Ty)/ Zsg(Ty).

Ry = Wy /W3,
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Here we write Ng(H) for the normalizer of H in G, and Zg(H) for the centralizer of
H in G. Wg is normal in Wy, since S7 is normal in Sy. The following Lemma 2.2

tells us that Wy is a subgroup of W (U,LG?).
Lemma 2.1. Suppcse that
¥ Wk x SLy(C) — 'G

s an A-parameter. Then

(1) Zig(Ty) is a Levi subgroup of 'G;
(2) Let E'M = Zi(Ty). Then 1 is an elliptic A-parameter of M.

Proof. Since the projection of Zi(T},) to Wy is onto, Zi(Ty) is a Levi subgroup
of G, by Borel’s Lemma 3.5 in [8].

Let IM = Z.5(Ty). where M is a Levi subgroup of G over F. Then the image of 4
is contained in “M. Suppose that “M, is a Levi subgroup of M also containing the
image of ¢. By the same lemma of Borel, ‘M, = Z.(S), where S is a torus of 1G®,
Since the image of 1 is contained in “M,, it follows that S is contained in Sy So, S
is contained in a conjugate of 1} in S5. We have "M C s;'"“M,s,. for an s, € S5,
IM, c "M implies “M, = “M. Therefore, 1 is elliptic for M. L

We denote by Wy, (“A°.2G°) the subgroup of W (FA°.%G°) consisting of the elements

which can be represented by elements of Sy,

Lemma 2.2. Let M be a Levi subgroup of G defined over IV, 1 te an elliptic A-
parameter of M. Suppose that “A° is the mazimal torus of the center of “M° and U

is the mazimal subiorus of “A° pointwise fired by Wy. Then
(1) (*A° N .Sy)° is a mazimal terus of S9;
(2) LA°N Sy = (LA9)WYr | ( the W fized points of “A° ), and U = (LA° N Sy)°;
(3) Wy can be identified with W, (A°.LG®).
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Proof. (1) Let T, be a maximal torus of S3. and "M, = Zig(T};). Then Lemma 2.1
says that v is elliptic for “M,. From Proposition 3.6 of [8], there is s, € Sy, such
that s;'M,s, = IM. So, M = Zig(s;11y8,). Hence, *M° = Zigo(s511yS,).
Since s;11ys, is contained in the center of LtM°. s;11ys, is contained in LA°. We
claim s;'Tys, = ("A° N Sy,)°. In fact, s;'Tys, C “A° N S5 implies s,'Tys, C
("A° N 83)° = ("A° N 8,)°. Since s;'Tys, is also a maximal torus of S3. we have
855 Tys, = (“A° N Sy)°. Therefore, (*A°N Sy)° is a maximal torus of S3.
(2) We write ¢(w. z,y) = g(w.x,y)w with g(w. x,y) € 1G° and w € Wpg, for
(w,z.y) € W} x SLy(C) . For any a € LA° N Sy, we have

ag(w, z. y)w = g(w, z, y)wa — g(w, z, y)a"w.
Therefore, a € £A° implies
glw, z,y)aw = g(w, z,y)a"w, for (w,z,y) € Wi x SLy(C) .

It follows a € (*A°)"¥, thus "A° N S, C (A°)"¥. On the other hand, (“A4°)"r C
LAe Sy, Therefore, 2A° N Sy, = (2A°)W*. This implies U = (£A° N Sy)°.

(3) Now, we let Ty, = (*A°N Sy)°, a maximal torus of S3. We set the map
[+ Wo(HA°.5GP) = W (Ty, Sy)

as [ollows: il w is represented by s € Sy, we define f(w) to be the coset of s in
W (Ty,Sy). First, we have to show [ is well defined. Note that s normalizes “A° N
Sy. It follows that s normalizes (“A° N Sy)? and s € Ng,(1y). Therefore, f(w) €
W (13, Sy). Suppose that w = 1 in Wy, (2A°LG°). Then s € EIM?, hence s € Zs,(13).
Therefore f(w) = 1. So far. we have proved f is well defined. Observe that f
is a homomorphism of groups. For isomorphism, suppose that f(w) = 1. Then
8 € Zrgo(Ty) = "M, so s € Zrgo(*A°) and w = 1. This proves that f is injective.
Let s € Ng, (Ty). We have

Nigs(Ty) € Nigo(*M®°) = Nigo(*4°).
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This implics that s € Nige("A°) N Sy. so f is surjective. Therefore, f is an isomor-
phism of the groups. (Il
Remarks. Let 1 be an elliptic A-parameter of M.
(1) When G is split over F, “A? is a maximal torus of S9.
(2) W, is a subgroup of W(U,*G°). from (1) and (2) of Lemma 2.2. And Wy, (*4°.G°)
can be identified with a subgroup of W (U,*G®). from (3) of Lemma 2.2.

W (A, G) acts on the set of isomorphic classes of irreducible admissible representa-
tions of M (F). From Lemma 6.2 of |8], every element of W (U,2G°) can be represented
by an element of N (U) fixed by Wp. ‘T'herefore, W (U.LG?) acts on ¥(M). Suppose
that v is an elliptic A-parameter of M. and « € I1,(M). We define

Wyr={w € Wy ; wr ~ m}
Wi.={weW;; wr >~}
R‘pf’r = W‘ﬁb:w/wo,ﬁ'
Lemma 2.3. Lel ¢ be an elliptic A-parameter of M. Then
Wy = {w e W(ULG); wp ~ o in M),
Proof Note that
W, € {w e W(U.XG); wp ~ 9 in M°},
Let w € W(U,“G°) such that wy ~ 9 in “M°. Suppose that w is represented by an
clement n in Nigo(U) and n is fixed by Wr. Then there is m € “M° depending on
n such that n= 1Y (w, z,y)n = m=Y(w, z,y)m, for every (w,z,y) € W} x SLy(C).
"Therefore mn=" € Sy. So w € W, O
Now suppose that G is split over /. Let 8 € ¥.(A, P). We denote by As the
maximal subtorus of A contained in the kernel of 3. and Mg = Zg(Ag). Set Pz =

MNg. where Ny = Mg N. Then My is a Levi subgroup of G over F' and Fj is a
maximal parabolic subgroup of My over F' with a Levi subgroup M. Let “Mj and “P4



ARTHUR R-GROUPS AND CLASSICAL R-GROUPS FOR S0(2n+1) 13
be the L-groups of Mg and P, respectively. Then “Mj is a Levi subgroup of /G, Py
is a maximal parabolic subgroup of “Mg and M is a Levi subgroup of “Ps. The set
(%A%, Pg) has a unique reduced root, and we denote this unique reduced root by 3".
We have “Mg = (“M°)gv. where (\M°)gv = Zigo((FA°)gv) and (A°)gv = (ker(BY))°.

Lemma 2.4, Suppose thal G is split cver F'. Let 3 € ¥.(A,G). Then,
n(W (A, Mg)) = W("A°, "M3).

Proof.  We first note the fact that for w € W(T.G). a € ¥(T,G), we have
nw)(a¥) = (w(a))’. Indeed. when w = s,. v € X(T,G), this can be verified by
computing < x, (s4(a))¥ >=< x.s,v(a") >, for any x € X(T). Here < -,- > is
the duality between X (7T') and X, (T'), which are characters and co-characters of 7.
and we identily X (T') and X,(T) with X, ("T°) and X (7). respectively. For general
w e W(T', G), the fact can be proved by induction on the length of w.

Observe that n(W (1. M)) = W(¥°M?), and n(W(T, Mg)) = W ("I Mg).
W (A, Mp) (respectively, W("A° X Mg)) is the subgroup of W (1’ Mg) (respectively,
W("T°," Mg)) whose elements stabilize the set of positive roots of (T, M) (respec-
tively, X("T'°, " M°) ). So, the fact above implies n(W (A, Mp)) = W (*A°, I’Mg). O

It is known that W (A, Mg) has order one or two, This lemmma says that W(A, Mpg)
has order two if and only if W (£A°, LM’g) has order two. When W (A, Mg) has order
two, we denote the non-trivial elements of W (A, Mg) and W (*A?, “Mg) by sg and

Sgv, respectively.

3. R-GROUPS FOR DISCRETE SERIES REPRESENTATIONS OF SO(2n + 1)

From this section, G = G,, = SO(2n+1) over I, the odd special orthogonal group.
Then G° = Spy,(C). Since G is split over F. Wy acts on G° trivially.
We realize G as a closed subgroup of GL(2n + 1) as the following. Let .J, be the

n by n matrix whose entries of the second diagonal are 1 and the other entries are
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zero. Then
G={g€GL2n +1); ‘gJons19 = Jons1,del(g) = 1},
Let T be the maximal torus of G consisting of elements

r=diag(zy. - a0, Lx, b oo xpt) @ € GL(1),

k)

T is defined over F. Let B be the set of upper-triangular matrices in G. Then B is
a Borel subgroup of G over I, and B = 1'U, where U is the unipotent radical of B.
Let e; be the character of I' sending x to z;. 'I'hen the root basis with respect to I’
and Bis A = {ay. -+ ,a,}. witha; =¢; —e;4y for 1 <i<n—1anda, =e, Let
P be a standard parabolic subgroup of G over F' with respect to B, and P = M N

the Levi decomposition of P. where
M = {diag(zy, - @y wo, 7t o a7 € Gl 2o € Gy}

T

~ GLyy % % GLy, % Gy, E m; = n.

0<i<r
Here Tx; is the transpose of x; with respect to the second diagonal, and we allow the

situation of mg = 0. T'he maximal subtorus of Z (M) is
A={z =diag(xilm,, - . Trlm . Lomgs1. T Iy -+ 27 o, ); @ € GL(1)}.
Let F; be the character of A sending x to x; for 1 <i < r. Then
YA, P)={ExFE; 1<i<j<rjU{E;l<i<r}.

Now we consider the L-group of G. We realize “G° as a closed subgroup of G Ly, (C)

by letting
'G? = {9 € GL2n(C): ‘gJ30 = Ji. }.
JIn . :
where J) = . Fix a maximal torus “T° of “G°,

—J,

LTO — {diﬂ'q(ml, T g m_l: e ,ml_l) Ti € GLI(C)}

T
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and the Borel subgroup “B° of 'G° containing “I'°. which consists of all upper-
triangular matrices in 1G°. We still use ¢; for the character of T sending x to
z;. Then the root base with respect to 1 and LB° is AY = {a}. -+, )}, where

v

a) =e; — ey for 1 <i<n—1and a/ = 2e,. The L-group I!M of M is a Levi

subgroup of “G and

LMO = {d’ﬁ&g($1 cr ey Loy Tx;]'. i i Ta:]—l) Ti € GLmi((c): 1< < T, Lo € rang}

12

GLn, (C) %+« % GLy, (C) x "Gy Z m; = 1.

gt
0<i<r

Let “A° be the maximal torus of Z(“M*°). We have
LAO = {dz'ag(xlfml., faes :xT'Imr'. jr2?’?’.':[1: zl:;I'Jirm«-: it :wl_]‘rml):. S C* }
We also use F; for the characters of “A° sending z to x;. 'I'hen

{EQZI:EJ IS?<?§T}U{EQJ ]SEST} l[m()?‘—‘ﬂ

ZT(LAD:LPO) — ‘ ‘ ‘ .
{E:i+ By 1<i<j<r}U{2E; 1<i<r} ifmp=0.

For B € X,(A, P). it can be verified that

B+ E;, #f=E+E;forl<i<j<r

B = E;, if=FE,1<i<randmy>0
21, if 8=1F;,1<i<rand mg=0.

1

For g € ¥, (A. P), W(A. Mg) has order two if and only if § = E;+ E; with m; = m,
for1<i<j<rorf=FEforl<i<r.

We now deseribe the actions of W(A, G) and W (¥4°.LA°) on M and “M°. respec-
tively. Let 8 € Y.(A, P) such that W(A, Mg) has order two, and let x € M and
y € “M°. s5 ( respectively, sgv) acts on M ( respectively, “M° ) by exchanging ;
and x; ( respectively. y; and y; ) if 8 = E; — E;, by changing z; to Ta:;' and z; to
-1

x.  ( respectively, y; to 'fy_;l and y; to "y, Hif B=E, + E;, by changing z; to !

T

( respectively, y; to ;' ) if B = E;. W(A, G) is generated by sg. 8 € %,.(A, G) such
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that W(A. M) has order two. So, for w € W(A,G), w acts on M by a permuta-
tion p on 1, - .z, and changing z;,.--- ,x;, to T, -, T:c;cl: if and only if n(w)

1

acts on “M° by the same permutation p on yy, -+, 4, and changing ;.- . ¥, to
Ty;ll., cee T*y;k]., forx € M, y € EIM°. We record this fact in the following lemma.
Lemma 3.1. W(*A°.2G°) acts on "M° in the same way (in the sense above) as
W(A.G) does en M.

Let 7 be a discrete series representation of M(F'). Set
W(r)={we W(A,G); wr ~n}

For B € ¥,.(A,G), we denote by ps(:, 7) the Plancherel measure for § and m, see
[30]. B is called a special root of w if pg(0,7) = 0. It is known that the set of
special roots of m forms a root system. Suppose that [ is a special root for m. "I'hen
W{(A, Mp) has order two and sg is in W(m) |30]. We define W°(m) as the subgroup of
W (m) generated by sz, where 3 € ¥, (A, P) and is special for m. W°(7) is a normal
subgroup of W(n), since p,p(0, 7) = pg(0,7) for w € W(m). The classical R-group
R(7) of 7 satisfies R(m) ~ W (m)/We(x), |31].

Suppose that # € X,(A. P). Let "g and "ng be the Lic algebras of "G and “Ng,
respectively. Denote by rg the adjoint representation of “M on ng. Since G is split

over F. Wg acts on g trivially. rs has a one form of the following forms:

Prm; @ Py OF Py @ Py, 1 <i<j<r, or
rg= { Prmg @ Py @ SYM? Py, 1<i<r, or
| Sym2pm,, l<i<r

The third situation happens only when mgy = 0. Here p,, and p, are the stan-
dard representations of G'L,,(C) and Spy,,(C) respectively, Sym?p,, is the symmetric
square of p,,,. Shahidi (in |26] and |27]) defined the L-function L(s, 7. rg) and e-factor

for each irreducible generic admissible representation m of M(F) and each ry for
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B € 3. (A, P). The Plancherel measures are closely related to the L-functions and
e-factors, see 3.1 of [26).

For each 8V € Y(*A°,LG°), we define
Lgﬁv =& Lgcx"'

where oV runs over the roots of “I'® in "G° restricting to Y. and "g,v is the root

space of & in Tg. Then

Ly Tggv @ Tgogv  if g = p, ® P, ® Sym®py,, |
Tagv. otherwise.
When rg = pp, @ fl,, & Sym®pm,, “gpv is the space that p,,, ® g, acts on, and
'rjng is the space that 15‘::,!7%2,0.,”Ti acts on. One can see this from [28], or by direct
computation,
To continue, we need the following lemma on Artin L-functions. Here we adopt

the proof due to Alan Roche, rather than our’s which invokes the result of local

Langlands correspondence for G L.

Lemma 3.2. Let r ="' ® S, be an irreducitle finite dimensional representation of
Wi with v' bounded. Then the Artin L-function L(s,r) has a pole al s = 0 if and
only if v is the trivial representation of Wi, i.e., n =1 and r' is the one dimensional

trivial representation of Wr.

Proof. ( Roche ) Recall
L(s.r) = L(s+ (n—1)/2.7").

Suppose that L(s,r) has a pole at s = 0. Let V be the representation space of

r

VIr ig a Wy invariant subspace of V. since Ip is normal in Wg. Since (1. V)
is irreducible, VI = 0 or V{* = V. 1In the first case, we get L(s.7’) = 1. hence
L(s,r) = 1 has no poles. In the second case, (r', V') is an irreducible representation

of Wy /Ip ~ 7. So, ¥ must be one dimensional and unramified. Since r’ is bounded
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and L(s + (n — 1)/2,7') has a pole at s = 0, we see that n = 1 and " is the one
dimensional trivial representation of Wg.

Conversely, if n = 1 and r’ is the one dimensional trivial representation of Wg,
then L(s.7) = (1 — ¢~*)! has a pole at s = 0. O

At this point, we make a comment on Theorem 2.2 of Jiang and Soudry in [17].
In Theorem 4.2 of [17], they proved that there is a bijection between the set of
tempered L-parameters of SO(2n + 1) and the set of equivalence classes of generic
irreducible tempered representations such that the Rankin-Selberg L-functions and
e-factors for SO(2n + 1) and GL are preserved. In Theorem 2.2 of |17], they proved
that generic discrete series representations correspond to a subset of elliptic tempered
L-parameters. We comment that this subset is actually the whole set of elliptic tem-
pered L-parameters. In fact, if ¢ is a tempered L-parameter corresponding to an irre-
ducible generic tempered representation which is not a discrete series representation,
then ¢ must factor through a proper Levi subgroup of Sps,(C), by the construction

of such a tempered L-parameter in the proof of Theorem 4.2 of |17].

Theorem 3.1. Lel ¢ be an elliptic tempered L-parameler of M. Assume thal all
members of 114(M) have same Plancherel measures Then for any m € 14;(M)

(]) Wﬁf’ = WQS,TF = W(ﬂ—)}'

(2) W =W2 ~ W),

(3) Hy= Ry, = Rir)

Progf. The (3) in the theorem comes from (1) and (2).
Let
=1 & S B o

be an elliptic tempered L-parameter of M, and
T=mM X Q7 Q

be a discrete series representation of M(F') in the L-packet I1,(M).
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W(A,G) acts on 7 by taking a permutation on 7, - .7, and taking some ;’s

to their contragredients. So does W (2A°.LG°) on ¢. Let w € W(A,G). Then by

Lemma 3.1, the permutation of n(w) on ¢y, - . ¢, is the same permutation of w on
w1, - ., and w takes m; to its contragredient if and only if n(w) takes ¢; to its
contragredient.

The action of W (A, ) has nothing to do with the L-packet of G,,, containing .
Since every L-packet of GL consists of one element, we have that W(w) = W (n') for
mand 7 in a same L-packet of M. Therefore, n(w)(¢) ~ ¢ if and only if w € W ().
LLemma 2.3 now implies the (1) of the theorem.

Since all the members of T1;(M) have the same Plancherel measures, W°(n) =
We(n') for w o' € TIu(M).

Jiang-Soudry’s Theorem 2.2 of [17] implies that there is a unique generic member
in I, (SO(2my + 1)). We assume that m, is generic. So 7 is generie, since every
discrete series representation of GL is generic. For a root 3 in 2.(A, P), pg(0,7) =0
if and only if L(s, m,75) has a pole at s = 0, [36].

By the results on Langlands correspondence proved by Harris and Taylor |11].
Henniart [12| for GL.

L(S'- s pm“ ® nﬁmj) = ‘L(S'. _pm,' ® ﬁmj o qb)

L(s: T, Pmy @ ﬂmj) = L(S-. Pm; & Pmy; © ¢)

Jiang-Soudry’s Theorem 2.2 in [17] for SO(2n + 1) says

L(5, 7. i, ® Png) = L(S. prmy ® Py © B).
And the recent work of Henniart [13] tells us

L(s. 7, Sym?pm,) = L(s. Sym*ppm, 0 ).

"I'hus.

L(s,m 1) = L(s. 750 ).
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Therefore, j15(0,7) = 0 if and only if L(s, 50 ¢) has a pole at 5 = 0.

By Lemma 3.2, the Artin L-function L(s,7g 0 ¢) has a pole at s = 0 if and only
if rg o ¢ contains the one dimensional trivial representation of Wy. Let s4 be the
Lie algebra of S§. 'Therefore, pg(0.7) = 0 if and only if there is a non-zero vector
X, in "ggv or Mgagv such that (rg o ¢(W5))(X,) = X,. We can always choose X,
in a neighborhood U of 0 in ‘g, where the exponential map exp of fg to "G° exists
and is bijective. So X, € 84 if and only if exp(X,) € 53 Since exp(rg(z)(X)) =
g lexp(X)x for v € EIM° and X € U, we see that ug(0,7) = 0 if and only if
55N g # 0, and if and only if s, N fgev # 0 or 54 N Lgav # 0. Therefore,
BY or 26 is in X(*A°, S9). depending on s4 N fggv # 0 or 545 N fgogv # 0. 'The
remark (1) following Lemma 2.1 says that “A° is a maximal torus of S5, so X(*4°, S9)
is a reduced root system. Therefore, not both of 5V and 24Y are in X("A° 53).
Conversely, by reversing the argument above, for each positive root y in X(*A°, 53
we can associate a unique reduced root 3 € Y,.(A, P) which is special for m and such
that 8Y or 28" is equal to 7. W(tA°, Sg) is generated by the reflections r.,, where
v € ¥("A°, S3). Lemma 2.4 says that 1(sg) = sgv. We need to prove that sgv = r,,
where v = Y or 23Y. Let S, = ZS;((LA”)T). Since “A° is a maximal torus of 5%,
W(FA°, S,) has order two and W(*A4°,S,) = {1,r,}. Note that S, C (“M°)gv. So.
W(lA°, S,) C W(*A°, (*M°)gv) = W(I‘A”:I‘Mg). Both of them have order two, thus
W(rA°,S,) = W(*A° " Mg). 1t follows sgv = r.. Therefore, W(mr) is isomorphic to
W under . We have finished the proof of (2). ([l

Remark. 'The proof of (2) of this theorem can actually be applied to connected re-
ductive split groups. as long as the equalities between Langlands-Shahidi L-functions

and corresponding Artin L-functions are established.
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4. GENERIC REPRESENTATIONS AND THE AUBERT INVOLUTION

A basic step in computing Langlands parameters for nontempered representations
is to find corresponding Langlands data. Lemma 4.2 describes Langlands data for
the Aubert involution of a generic representation.

Let us first introduce some notation related to parabolic induction and segments.

For admissible representations p,. py of GL(ky, F'), GL(ky. F') respectively, we define

p1 % pg = fTTld;G:Eg(.Ol ® pa).

where P(F') is the standard parabolic subgroup of G(F) = GL(ky + ko, F') corre-
sponding to the standard Levi subgroup M (F) =2 GL(ki, F') x GL(ke, F'). If p is
an admissible representation of GL(k. F) and 7 is an admissible representation of
SO(2m + 1, F). then we define
pxmT= Indt}iﬁ%(p@ ).

where P(F) is the standard parabolic subgroup of G(F) = SO(2(k +m) + 1, I)
corresponding to the standard Levi subgroup M(F') =2 GL(k, F') x SO(2m + 1, F)
(132]).

Let v denote det . Let p be an irreducible supercuspidal representation of GL(k. F')
and n a non-negative integer. The set [p, v"p| = {p,vp. . ... v"p} is called a segment.

We know from [35] that the representation v?px v !px - - -x p has a unique irreducible

subrepresentation §|p, v"p|. This subrepresentation is square integrable if the segment
is balanced. i.e., of the form [v ™ p, v™p|, where p is unitary and m is half an integer.

As in [17], we define

A(p,m) =68v"p, V™,

for a balanced segment. The representation v"p x v"'p x ... x p has a unique

irreducible quotient, which we denote by ([p, v"p].
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For a representation . we denote by 7 the contragredient of «r. If # & 7w, we say

that 7 is self-dual. For a segment X = |p, v"p], we define
X =[v"p Al

Let Dy r) be the Aubert duality operator ([4]). If 7 is an irreducible representation
of M(F), we denote by & the representation 0Dy p)(7), taking the sign + or —
so that 7 is a positive element in the Grothendieck group. We call @ the Aubert
involution of w. For GGL(n, I'), the Aubert involution coincides with the Zelevinsky

involution and

—

(2) 0(X) = ¢(%), voo(X) = vi((X).

Suppose p is an irreducible supercuspidal unitary representation of GL(k, I') and
7 a generic supercuspidal representation of SO(2m + 1, F). 1f p 2 p, then vPp x 7 is
irreducible, for any 3 € R. If p 2 . there exists a € {0, 3. 1} such that v*?p x 7 is
reducible and v?p x w is irreducible for 3 # « [27]. We say the pair (p. 7) satisfies
(Ca).

We refer to [24] for the definition of a generic representation, i.e.. an irreducible
admissible representation having a Whittaker model. We extend this definition to an
admissible representation 7 by saying that 7 is generic if it has an irreducible generic
subquotient. An irreducible admissible representation admits at most one Whittaker
model with respect to the generic character . A ‘heredity” property of Whittaker
models with respect to parabolic induction is described by Theorem 2 of [24]. We

interpret these results for SO(2n + 1, F') in the following lemma:

Lemma 4.1. Lel p;, i = 1,...,q, be an irreducible admissible representaticn of
GL(k;, F) and 7 an irreducitle admissible representation of SO(2n'+ 1, F). Then the

induced representation

PLX X Pg X T
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has at mast one generic component. The representation py x - - x p, x T 18 generic

if and only if p;, 1 =1....,q, and 7 are generic.

Proof. It follows from [24], Theorems 2 and 3, using the fact that all generic
characters of SO(2n + 1, F) are T-equivalent. U
Before we proceed. let us review the Langlands classification for SO(2n + 1, I).
Suppose p; is an irreducible square integrable representation of GL(n;, F),i =1....,k
and @y > -+« > a > 0 are real numbers. Let 7 be a tempered representa-
tion of SO(2¢ + 1, F). Then the induced representation v p; x -« x v¥pp x T

has a unique irreducible quotient, which we call the Langlands quotient and de-

note by L(v™py,.... v pe, 7). For any irreducible admissible representation m of
SO(2n + 1, F). there exist Langlands data v*'py, ..., v*p,, 7 as above, such that
o= L(v*py, ..., v%pg, 7). liquivalently, we could formulate the Langlands classifi-
cation with py,..., pr tempered and oy > -+ > a3 > 0. which is the usual form of

Langlands data. The connection between two forms of Langlands data comes from
the irreducibility of induced-from-unitary-representations of GL(n. F'). In particular,
if p is a tempered representation of GL(n, F'), then p = §; x - - - x §,, for some square

integrable representations dy,.. .. d,.

Lemma 4.2. Let 7 be an irreducible generic representation of SO(2n+ 1, F) and 7
ils Aubert invclution. Letl

VuLpl @___@qupq@?_
te the Langlands data of T: oy = --- > g > 0, p; 5 an irreducible square integrable
representation of GL(k;, I), 7 is an irreducible tempered representaticn of SO(2n' +
1, I') and 7 is the unique quotient of the induced representation

vHpr X o x VTP, X T
Then p;, i = 1.....q, is supercuspidal and 7 is a subrepresentation cf

Pgy1 % o X Pp X O
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where p;, i=q+1..... T, is a supercuspidal unitary representation of GL(k;, F') and

o is a supercuspidal representation of SO(2n” + 1. F).

Proof. In the Grothendieck group. the Aubert involution commutes with parabolic
induction ([4], Theorem 1.7). By applying the Aubert involution to v*1p; x -« x

v®p, x T, we conclude that m = 7 is a component of
VM PL X e X UMy X T

This representation is generic, because it has the generic subquotient m. Lemma 4.1
tells us that p;. i = 1,...,q. and 7 are generic. Let i € {1,.... q}. The representation
p; is a square integrable representation of GL(k;, F'). therefore, p; = 4(%;), for a
balanced segment ;. According to [35], Theorem 9.7, p; = ((%;) is generic if and
only if p; is supercuspidal. It follows that p; is supercuspidal.

T'he tempered representation 7 is a subrepresentation of a representation induced

from a square integrable representation. 'I'herefore. 7 is a subrepresentation of
0(Bgi1) X -+ x 8(X,) x 1o

where the segments X 4. ..., 2, are balanced and 7 is square integrable. We ap-

ply Theorem 1.1 of |15|, which describes square integrable representations of odd-

orthogonal groups. It follows that 7 is a subrepresentation of
(3) G gi1) > o x 0(25) x H(Xpyr) x -+ x 8(25) * 0,

where the segments ;4. ..., Y, are balanced and X, ;... .. >, o satisfy conditions

from Theorem 1.1 of [15]. One of the conditions is that ¢ is supercuspidal. In the

Grothendieck group, the Aubert involution of (3) is equal to

(4) C(Egq1) X o x C(Br) x {(ZBpyr) > - x {(Es) x 0.
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It is gencric because it has the generic component 7. It follows that §(2;) is super-
cuspidal, for all ¢ € {g+ 1.....,m,r+ 1,....s} and ¢ is generic. In particular, for
i€ {g+1,...,r}, the representation §(>;) = p; is supercuspidal and unitary.

. According to Theorem 1.1 of

Now. we follow notation of [15 [5]. we consider an

irreducible square integrable representation II, which is a subrepresentation of the

representation parabolically induced from dq(11), where
So(I) = v p. v pl @ - @S|y % p.v™*p| @ 0

and conditions of Theorem 1.1 |15] are satisfied. We consider the case when §|v =% p, 1% ]
is supercuspidal, for all 4, which implies —¢; = d;.
Suppose (p, o) satisfies (Ca), i.e., @ > 0 and v**p x o is reducible. Since o is

T'hen k is equal to the

supercuspidal and generic, @ € {0, 3, 1}. Let 3 be as in |15].

number of elements in the set {—f3, -3 —1,.... —a}. We claim that k£ = 0.

(1) If (p. o) satisfies (C1). then @ =1 and 0 < < 2. If =1, then
do(TT) = vp®o.

The representation vp x ¢ has a unique generic square integrable representa-
tion 8. Then § is not generic. This contradicts the fact that (4) has a generic
subquotient. If 8 =2, then {—f3, -8 —1,..., —a} =0.

(2) If (p, 0) satisfies (C3), then a = § and 0 < 8 < 3. The proof is similar to 1.
(3) If (p. o) satisfies (C0), then a« = 0 and 0 < B < 1. It follows that 8 = 1 and

{-B,-B—1..... —a} =
The claim follows. In particular, {r +1.....s} = 0 and the conditions of the lemma,
are fulfilled. O

Corollary 4.1. Let m be an irreducible generic square-iniegrable representation of
SO(2n + 1, F) and 7 ils Aubert invclution. Suppose that m is not supercuspidal

Then @ is non-tempered.
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Proof. Follows from Lemma 4.2, using Casselman’s square-integrability criterion.

O

5. L-PARAMETERS AND R-GROUPS OF GENERIC DISCRETE SERIES AND THEIR

INVOLUTIONS

We first review the description of all irreducible generic square integrable repre-

sentations of SO(2n + 1, F) in 23] and [33].

Theorem 5.1. (Muic, [23] and Tadic, [33])

(a)

Let o be a generic supercuspidal representation of SO(2n’ + 1, F) and

X = [V % i), 20 € Ly 20 €Ly p X P i =1,k

a set of segments satisfying
(i) b; > a;.
(ii) (1) If (ps,0) satisfies (C), then b; € 3 + 7%, a; > —1.
(2) If (p;, 0) satisfies (CO), then b; € Z, a; > 0.
(3) If (pi, o) satisfies (C1), thenb; € Z, a; > —1, a; # 0.
(iii) If p;s = p; for i # j, then either b; < a; or b; < a;.
Then, the representaticn §(2, N Eh) X e x 0(2g ﬂﬁk) x 0 has a unique irre-
ducible generic subrepresentation, dencte it by 7. The representation (%, \
531) X e O( 2\ E]k) x T has a unique irreducible subrepresentaticn which

we denole by

The representation (X1, .. .. Yg. 0)r 1S square integrable, generic.
Suppose T is an irreducible square integrable generic representation of SO(2n+
1, F). Then there exists a unique o and a unique set of segments {21 ..., Yk}

satisfying (i) - (iii) such that m =2 (X, ..., Xk, 0),.

1
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We fix 7 22 6(Y,. . ... Yk, 0); as in Theorem 5.1. Let

Denote by r the local Langlands reciprocity map for GL(F) [11, 12]. Let ¢; be the
Langlands paramcter for p;. ic., r(¢;) = p;. For a = 0, %, 1. define the following
subsets of P:

Co={i€ P (pi.o) satisfies (Ca), a; > 0},

Clz{?‘,EP ﬂ,,;:—l}:

2

1
C;z{iep ai:_i}.'

)UD—{iEP GgEU}—C@U()%UCl.
Lemma 5.1. Let m = (21, ..., 2k 0)r. Let {li. ... l;} be the mulliset
{3 1€P jie{—a,—a;+1,... b}\{0}}

writlen in a non-increasing order. For ls = j;, lel p, = pi. Let 7o be the unique

( X pPi | * 0.
1eCyUC

Then @ is the Langlands quotient of the induced representalion

generic component of

Vi x -oox vipy, x g,

Proof. Let
=" p@ @ p)@- @@ 1@ @v %p) @ 0.

Denote by P(}') the standard parabolic subgroup corresponding to Il. We consider
the full-induced representation [ ndf)mﬂ 'I'hen 7 is a subrepresentation of 1 ndﬁ%ﬂl’[
and, by Corollary 4.2 of [5], 7 is a quotient of I'ndff,gf;H Lemma 4.2 tells us that @
is a quotient of

VO X o X VT X Ogpq X e X Op X O,
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where @y > -+ > a, > 0 and §; arc supercuspidal unitary representations. It
follows from [9], Corollary 6.3.7 and from the description of the Weyl group for odd-

orthogonal groups (

32]) that v*16; ® - - - x V¥, R §y41 ® - - ®, ® 0 can be obtained
from TI by permutations and taking contragredients. 'I'he condition on «.....a,

implies that {ay..... a4} = {l;,...,l;}. Therefore, 7 is a quotient of

oy, x oox Uy, x ( x p;) xo.
ieColUCy
In particular, 7 is a quotient of the induced representation

(5) Pip x ox Vop x 7,

where 7' is a component, of

( X ,O;) x .
1eCoUCH

Note that (5) is Langlands data. It has the unique quotient 7. Then 7 is a component

of (UM, x «++x Vlp, x '), which has the same irreducible factors as v p;, x « -+ x
v, x 7. We conclude that 7/ is generic, so 7/ = 7. O

Theorem 5.2. Let n bte an irreducitle generic square integrable representaticn of
SO2n+ 1, F). Write m 22 §(%,. .. .. Yk, 0)r as in Thecrem 5.1 Let

U(T) = pry1 X - % py
te the local Langlands functorial lift of ™ defined in [17]. Define
A={k+1,... 1}
Ay=A\{G €A p; = p; for some i€ C_y}.

Then
)= (5800) x (g ama) > (x0),

The Langlands parameter for w is

(6) (@Cf’i ® S2bi+1) @ (@d’i & SQﬂi-l-l) 2 (@ ¢i ® Sl) :

ic P icPy i€ Ap
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The Langlands parameler for 7 is

|
@ @ (VgSie - _|j‘?5;'®51)

\ ieP j;. -
J#0

EE)( @ ¢’£®51) & (@@@S]) D ( @ (151;@31) ;
1ECHUC, €A 1cCpUC,

which 1s equal tc
by
(7) (@ B pesio - """qm@Sl)) ® (EB%@’SI) '
i€P j=—aj icA
Proof. According to [16], Theorem 6.1 and [17], the proof of 'I'heorem 2.1 (also, cf.
[36]. Proposition 4.1), we have
(i) If 4,7 € A, i # j, then p; 2 p;.
(ii) {ps i€ A} ={p (p.0o)satisfies(C1)}.
The local Langlands functorial lift of o follows from [17]. the proof of Theorem 2.1.
According to |17]. equation (2.32). the lift /() is the generic constituent of
(8) X (5(Z:) x 5(&-)) x 0(0).
The proof of Theorem 2.1 in [17] describes different pieces of (8) and corresponding

generic constituents. The Py-piece comes from equations (2.39), (2.43) and (2.45) of
[17]:
(9) X (Apiy ai) x Alpi, bi)).

e Fy
We obtain the C_;-piece from equation (2.41) of [17], by eliminating the part which
is included in (9). The C_;-piece is

(10) % A(pi. by).

ieC_]
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In a similar way, we obtain the C'_:i-picce from equation (2.47) of |17]:

(11) X A(pi, bi).

iceC

b=

i

0= (200) > (5,08000) > (20)

Let Cf be a subset of Cy such that {p; i € Cj} contains exactly one copy of p,

Now the lift £(m) follows from (9), (10) and (11):

for each p € {p; 1 € Co}. Let C3* = Cy \ C§. Denote by 719 the unique generic

constituent of

(12) ( X P )<:"J':( X Pi X()(pt' > a.
i€CoUCH ieCuUCE ieCy
The representation ( X pi-) x ¢ has a unique generic subrepresentation 7y, which is
ieCy

elliptic. 'T'hen by [17], the proof of I'heorem 3.1, equation (3.12),

ﬁ(’ﬁ):( X ﬁi)x (Xﬂi)x ( X ﬂi)-
icCy i€ A icCy

The representation ( X  pi ) x 7 is irreducible, generic and it is equal to 7.
1eCLUCH*

According to |17], the proof of T'heorem 4.1. equation (4.25),

ﬁ(ﬁl):( X Pi)*f('ﬁ)x( X P-a):( X ﬁi)%(xﬁs)*( X ﬂa)-
ieCh UCG"* ieCh UCG‘* 1eCpUCH i€EA ieCplUCy

T'he parameter for 7y is

( D gﬁi@Sl)eB(@qbi@Sl)éB( ( gaﬁg-Q?JSl).

icCpluc icA 1eCplUC

Let {l;....,l,} be the multiset

{ji 1€P jie{—a;,—a;+1,...,b}\{0}}

written in a non-increasing order. Then 7 is the Langlands quotient of the induced

representation v''p, x -+ x vlp, x 75. The Langlands parameter of a Langlands
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quotient (for SO(2n + 1, F')) is described in [17], Proposition 6.1 and Theorem 6.1.
According to equations (6.5), (6.9) and (6.2) of [17], the Langlands parameter of 7 is

(@( br o) RS @ - b 1(,0;3)@51))@‘9(";0)

[ s
= \@ P "¢p@Sid - Tdgi®S) @)
ieP j=—ay
i#0

which is equal to

[
DD ( assio  Puos)

ieP j=—ay
J#0

@( @ (ba?@n.q]) 5] (@¢1®31) (D( @ fi‘i@S]).

ieClyUcy i€EA i=ChHUC
Here. we use the fact that 7y and 7 have the same parameter, which can be explained

as follows. From (12), 79 is the unique generic constituent of

(13) ( X ,oi)xcr
iECﬂUC]

Corollary 4.2 of |5] tells us 7p is a component of (13). Therefore, 7y and 7, are tempered
representations induced from the same discrete series representation. Langlands’ orig-
inal construction of L-packets for real groups, from discrete series L-packets. based
on the Langlands classification [21], can be repeated for p-adic groups. Tempered
L-packets are then defined by inducing from discrete series L-packets on Levi fac-
tors (|27]. Section 9). In particular, tempered representations coming from a single

discrete series are a part ol the same L-packet. U
Corollary 5.1. Let w be a generic discrete representation of G(F). Let

¥ Wp x SL(2,C) x SL(2,C) — Sp(2n,C)
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te the A-parameter of ™ and @b the A-parameler of w. Then,
b(w, z,y) = Y(w,y, ).
In particular, t,/) and ¢ have the same image in Sp(2n,C).
Proof. First, let us consider an A-parameter of the form
(14) P = P @ Sy ® Sp.

Let ¢y, denote the L-parameter corresponding to ;. defined by equation (1). From
the definition of S,,, which is the n dimensional irreducible complex representation of

SLy(C), we see that

w /2 )
$(w) & S s = (D $(w) w.
—1/2
w —(n—1)/2<j<(n—1)/2
It follows
(n—1)/2 _
(15) @‘i”l = @ ' jﬁﬁ & S'm.-
j=—(n—1)/2
Now, let Xy, . Yg, 0 and w = §(21. -+ , 2. 0), be as in Theorem 5.2. The L-

parameters of m and 7 are computed in Theorem 5.2. Denote by 1 the A-parameter

of m. Since 7 is tempered. we read 9 directly from (6):

(16) ¥ = (GBMSM@sl)@(@wszwwl)@(@@@&@&).

iceP i€ Py 1€ Ap

Define

(17) 4 = (@@@Sl @Szbm) o (@(ﬁ),;@Sl @Sgui.l) @ (EBqS,-,@Sl ®5‘1) .
ieP i€ Py i€ Ag

We claim ¢ is the A-parameter of #. Indeed, (15) and (17) imply

4o — (@@ .qui@sl)@ (@ D - fqai@sl)@(@msl)

icP j=—b; iEFy j=—a; icAp
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b
_ (@@ (- 728 ® - iqbé@f;l)) (lj(@¢é®xg]).

iEP j=—ay =
This is precisely the L-parameter of 7, given by (7). Therefore. 9 is the A-parameter
of . 1f we compare (16) and (17), we see that P (w, z,y) = ¥(w,y, z). 1t follows that

1 and 9 have the same image in G, O

Theorem 5.3. Let G = SO(2n+1), M = GL,,, % -+ - x GLy,. x Gy a Levi subgroup
of G, andm=m & - QT @My a generic discrele representation of M(F). Assume
that all the members in the L-packel containing © have same Plancherel measures.

In addition, assume 7 is unitary. Then
H.«i‘b,oﬁ— >~ H{’ﬁ') where 'l/) = ‘1/)(‘?%)

Proof
() = (@) @ - D Y(7r) D P(To).

By Corollary 5.1, 9(7p) and ¢(m) have the same image. Let i € {1....,r}. Since m;
bi—1
2

is square integrable, it is of the form m; = A(p;, ). where b; € Z and p; is a unitary

supercuspidal representation of G Ly, (F). Then ¢(m;) = ¢(p;) @ Sy, (|35], Section 10).

It follows from (2) that 7, is the Langlands quotient of the induced representation

pb=D2p . ox y= =12 According to [35]. Section 10, the L-parameter of #; is
o) =+ CDP(p;) x oo x o TR py).
Equations (14) and (15) imply
P(i:) = ¢(pi) ® Sp, ® 51,

So 9(7;) and ¢(m;) have the same image. Therefore, ¥(7) and ¢(7) have the same

image in 'G. Let ¥ = ¥(7), ¢ = ¢(m). It follows that

Wy =W,y Wo=W5



34 DUBRAVKA BAN AND YUANLI ZHANG

7 is certainly an element in the A-packet I1,(M) of ¢ |1]. By definition,
Wyi = {w € Wy wit = 7},

i = 1w eWg: wit~}.
T'heorem 3.1 says that Wy ~ W(m) and W ~ W?(x). Since for w € W(A,G).

wm ~ 7 if and only if wi ~ @, we see
Wea = W(r), W, ~W°(r).

"This gives Ry 7 ~ R(m). The classical R-group R(7) of 7 is defined in |5| by putting
R(#) = R(w). So Ry ~ R(%). 0
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