DUALITY AND THE NORMALIZATION OF STANDARD
INTERTWINING OPERATORS

DUBRAVKA BAN AND CHRIS JANTZEN

Abstract: Normalized standard intertwining operators associated to
an induced representation and its dual (dual in the sense of Aubert)
arise in work on a conjecture of Arthur about R-groups. The purpose
of this paper is to address the question of relating the normalizing
factors used.

1. INTRODUCTION

This paper is on certain questions related to R-groups for p-adic groups.

First, let us recall the classical situation. Suppose G is a split connected reductive
p-adic group and P = MU a parabolic subgroup. For ¢ an irreducible square-
integrable representation of M, consider Ind$ (o) (normalized induction). Associated
to Ind% (o) is the R-group, a subgroup of the Weyl group which governs the reducibility
of this induced representation. More precisely, the normalized standard intertwining
operators {A(c,7)|r € R} constitute a basis for Homg(Ind$(0),Ind% (o). Further,
the action of these standard intertwining operators on the irreducible subspaces of
Indg(a) is by representations of R, which can be rephrased in the form

traceA(o, 7)Ind% (o) = Ztraeep(r)traceﬂ(p),
pER

acting on C°(G). (Here, 7(p) is the component of Ind% (o) associated to p under the
identification of components of Ind (o) with representations of R.)

Classically, the construction of the R-group relies on Plancherel measures, whence
the assumption o square-integrable. In [A1], Arthur conjectured the existence of R-
groups in certain situations where the inducing representation is not square-integrable.
The papers [J],[B2],[B3] deal with aspects of this conjecture, and serve as the starting
point for this paper.

The basic idea behind [B2],[B3] is to use the duality operator of [Aul,[ScSt] to
construct one of the conjectured R-groups from a classical one ([J] relies on the
Iwahori-Matsumoto involution [IM] and is more specialized). More precisely, the
R-group for Ind%(o) is used to construct an R-group for Ind%(4) under suitable

hypotheses. This R-group then has the desired properties.
1
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The intertwining operators involved are normalized standard intertwining opera-
tors. Neither [J] nor [B2],[B3] addresses the question of normalizing factors directly.
Instead, they use the fact that normalizations may be chosen so that the normalized
intertwining operators have certain useful properties, which are enough to obtain the
results wanted. In particular, no connection is drawn between the normalizing fac-
tors for the induced representation and its dual. Such a connection is the aim of this
paper.

We now give a brief description of the contents, section by section. The next
section reviews some notation and background material. The third section introduces
a generalization of Plancherel measure to nontempered representations, based on the
behavior of standard intertwining operators. In the fourth section, we show that the
duality operator behaves well with respect to restriction to the derived subgroup,
using that fact to relate (generalized) Plancherel measures for a group to those for its
derived subgroup. This is used in the fifth section, where we discuss normalization of
standard intertwining operators. This section has the main result of the paper, which
essentially says that one can use the same normalizing factors whether inducing from
a representation or its dual (cf. Theorem 5.3).

2. NOTATION AND PRELIMINARIES

In this section, we introduce notation and review some results which will be needed
in the rest of this paper.

Let G be a split connected reductive p-adic group. We fix a maximal split torus
Ap of G and a minimal parabolic subgroup Fy which has Ay as its split component.
We let W = W(G/Ay) denote the Weyl group of G with respect to Aj.

Let X denote the set of roots of G with respect to Ay. The choice of Py determines
the set of positive roots (resp., negative roots, simple roots), which we denote by X
(resp., 7, A).

Let P = MU be the standard parabolic subgroup corresponding to © C A and A
the split component of M. Let

a=ae = Hom(X(A)p,R) = Hom(X(M)p,R)
be the real Lie algebra of A and

its dual ([H-C], §7; [S2], §0.5). Each element y € X(A) corresponds to a unique
element of a*, called the associated weight. Set ai = a*®C. There is a homomorphism
([H-C], §7) Ho = Hyp : M — a such that

q(XvH]\/I(m» = |x(m)|
for allm € M, x € X(M)p. Given v € a*, let us write

exp v = q<V7HM(')>
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for the corresponding character.

Fix a W-invariant inner product on ag and use this inner product to identify ag
and ap ([S2], §0.5). By restriction, we obtain the inner product on a and we identify
a® and a. In this manner, the natural projection aj — a* gives rise to the inclusion

i:at — ap.
If v € a*, we use the same letter v to denote i(v) € aj. Then
(v, Hyp(a)) = (v,Ho(a)) for all a € Ay.

We use igp to denote the functor of normalized parabolic induction ([BeZ]): if
(0,V) is a smooth representation of M, then (iga(0),igm(V)) is the representa-
tion of G parabolically induced from (o, V). Similarly, ris ¢ denotes the normalized
Jacquet functor.

Let Ap C a* denote the set of simple roots corresponding to the pair (P, A). Set

af ={rea|(x,a) <0 for all @ € Ap}.

We recall the Langlands classification for p-adic groups (cf. [S1], [BoW]). This ver-
sion is closer to that of [S1], though we work in the subrepresentation setting rather
than the quotient setting.

Theorem 2.1. (the Langlands classification)

(1) Let P = MU be a standard parabolic subgroup of G, T an irreducible tem-
pered representation of M and v € a*. Then the induced representation
igm(exp v ® T) has a unique irreducible subrepresentation, which we denote
by L(P,v,T).

(2) Let m be an irreducible admissible representation of G. Then there ezists a
unique triple (P,v,T) as in (1) such that m = L(P,v,T).

Suppose that o is an irreducible admissible representation of M and w € W such
that w(©) C A. Set

Upy=UsNwU w™,

U =w ' Upw=w"'UpwnU".

w

The standard intertwining operator A (v, o, w) is formally defined by
A(v,o,w)f(g) = | flw ug)du,
U’UJ

where v € af, f € Vi, 1 (exp veo) and g € G (see [B2], [Sh1], [GSh] for a more detailed
discussion). It converges absolutely for the real part of v in a certain chamber and

v— A(v,o,w)

has analytic continuation as meromorphic function of v € af (cf. [A2]).
We let pp denote half the sum of the positive roots associated to U.
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Theorem 2.2. (Harish-Chandra, cf. page 182, [H-C]) Let o be an irreducible tem-
pered representation of M. Then there is a complex number (v, o, w) so that

A(v,0,w)A(wv,wo,w™) = p(v,0,w) " 75 (G/P),
where
Yu(G/P) = / g2reHr@) g
Uw
Moreover, v — p(v, o, w) is meromorphic on af and holomorphic and nonnegative on
the unitary axis ia*.

(v, o, w) is called the Plancherel measure associated to v, o, w.

The following result will be used to deal with factorizations of intertwining op-
erators in section 5. It is Lemma 2.1.2 and its corollary from [Shl] and Corol-
lary 6.3 from [B2]. As in those papers, if © C A, we let Yo be the roots in X
which lie in the linear span of ©. Letting »(©) denote roots of (Po, Ag), we have
Y(0) ={alse |a€X—3e}. Given o € X(0), we let

o] ={f e X —Xo| Blag = qtae }-
We now state the lemma:

Lemma 2.3. Suppose ©,0" C A are associate. Take w € W(0,0") = {w e W |w -
© = ©'}. Then, there exists a family of subsets O1,...,0,41 C A such that

(1) @1 = 0O and @n—l—l = @/,'

(2) Fiz 1 < i < n; then there exists a root a; € A\ ©; such that ©,41 is the
congugate of ©; in ; = O; U ay;

(3) Letting wi o denote the longest element of the Weyl group of Me, set w; =
wio,we, i W(0;,0,41) for 1 <i<n. Then w =w,---w;.

(4) A(v,o,w) = A(Vp,0n,wy) - A(v1,01,w1), where vy = v, 01 = 0, V; =
wi—1(vi—1) and o; = wi—1(0i—1) for 2 <i<n.

(5) Let X1 (O) be the set of all reduced roots in 37 (©). Let

2:(0,0",w) ={[f] € £1(0) | B € X" = X, w(B) € 7}

Fiz w = wy---wy as in (3), and let ay, ..., € A be the corresponding
simple roots. Then

(6] =wit - wi ([d]), 1<i<n,

are all distinct elements of ¥,(0, 0", w). Furthermore, given [(] € ¥£,(0, 0, w),
there exists an i, 1 <1i < n, such that [3] = wi' - w; " ([a]).



DUALITY AND THE NORMALIZATION OF STANDARD INTERTWINING OPERATORS 5

3. PLANCHEREL MEASURES FOR NONTEMPERED REPRESENTATIONS

In this section, we extend the notion of Plancherel measure and obtain a formula
like that of Theorem 2.2, but valid more generally. We then relate these (general-
ized) Plancherel measures to those of representations having the same supercuspidal
support.

Let o be an irreducible representation of M = Mg. By the Langlands classification
(Theorem 2.1), there exist Langlands data (FPy N M, 1y, 0¢) such that

0 = L(P(] ﬂM, 1/0,0'0).

Let ©g be the set of simple roots corresponding to Fy. Denote ag by ag. Then
a* C aj. We have v € (af)_.
Let w € W satisfy w(©) C A. Then w(6y) C A. We have

ve= [] v, Us= ][] U~

aext—xf Q€D —Ng

(0% — (0%

U@o = H e, U@o = H Ue,
aext-xt aEn——%g

S ©9

where Yg (resp., Yg,) denotes the subset of roots in the linear span of © (resp., ©y).
The conditions w(©) C A and w(©) C A imply w(¥Xg) > 0 and w(Xg ) > 0. It
follows that

Us = (Uo)w=[] U".

aext
w(a)<0

Lemma 3.1. Let v € af. C (ai)c. Then
exp V ® inn, (00) = iar i, (€Xp v @ 0y).
Proof. This is just a rephrasing of Proposition 1.9 (f) of [BeZ]. OJ
It follows from Lemma 3.1 that exp v ® o is a subrepresentation of iy a, (exp(vo +

V) ®0yp) and therefore the standard intertwining operator A(v, o, w) is the restriction
of A(vy + v, 00,w), i.e.,

A(v,o,w) = A(vy + v, ao,w)|iG’M(V).
According to Theorem 2.2, we have
A(vy + v, 00, w)A(w(vg + V), wog, w™) = (v + v, 00, w) V2 (G/Ry).
We define

:U“(V> U,'lU) = :U“(VO + v, 0’0,'LU)

and call p(v, 0, w) the Plancherel measure associated to v, o, w.
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Theorem 3.2. Let o be an irreducible admissible representation of M. Then
A(v,0,w)A(wv,wo,w™) = p(v,0,w) " 75 (G/P)
and v — p(v, o, w) is meromorphic on ag.
Proof. Theorem 2.2 implies
A(V7 g, ’LU)A(’LUI/, wo, w_l) = :U“(V> g, ,w)—l,yi (G/PO)
It follows from U, = (Up). that v, (G/Py) = Y (G/P). O
Let 7 be an irreducible admissible representation of M = Mg. If 7y is an irreducible
supercuspidal representation of a standard Levi subgroup My < M such that 7 occurs
as a subquotient of iy a, (70), we say that 7y is in the supercuspidal support of 7. We
note that two irreducible representations of M either have the same supercuspidal
support or their supercuspidal supports are disjoint.

Let © and ©g be the sets of simple roots corresponding to M and M, respectively.
Let Wg = W(M/Ap) denote the Weyl group of M = Mg with respect to Ag. Set

We () = {w € We | w(Qy) = Oy}

Theorem 3.3. Suppose that o and o’ are irreducible admissible representations of
M with the same supercuspidal support. Let w € W such that w(©) C A. Then,

plv, o', w) = p(v, o,w),
for all v € ag.

Proof. Let o be a supercuspidal representation such that o is a subrepresentation of
inm,(exp Yo ® 0p). According to [C], Corollary 7.2.2, there exists wy € We(0y) such
that o’ is equivalent to a subrepresentation of iy as, (wo(exp vy ® 0y)).

Let w) = wwow™!. In the same way as in the proof of Lemma 7.1 [B1], we obtain

(1) wwy = whw,

(2) wow™ = wtu,

(3) (wwo) = (w) + I(uwy),
(4) awhw) = 1(uwh) + l(w),
(5) awow™) = I(w) + I(w™),
(6) ) = 1w + (u).

The basic idea of the proof is similar to that of the proof of Lemma 7.1 [B1]. Let
v € ag. It follows from (1) that

(7) A (v + vy, 00, wyw) = A(v + vg, 00, wwy).
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Using properties of standard intertwining operators, (3) and (4) then imply
(8) A(w(v+wp),wo, wy)A(v+ro, 00, w) = Awe(v+10), wooo, w)A(v+ 1y, 00, wo).

Similarly, (2), (5) and (6) imply
(9)

A (v+up, 09, wo) A (w(v+1p), wog, w™ ) = A(wwe(v+1n), wweoo, w™ ) A(w(v+ig), wog, w)).
According to Theorem 3.2,
(10) A(v,0,w)A(wr,wo,w™) = p(v,o,w) " (G/P).

Since o is a subrepresentation of iy a,(exp vp ® 09), the standard intertwining oper-
ator A(v, o, w) is the restriction of A(v + vy, 09, w) and

(11) A(v+ v, 00, w)A(w(v + 1), wog, w ) = u(v + vy, o, w) 42 (G/P).

Now, using (11), (8) and (9), we have
(12)
A(w(v + ) woo, wy)u(v, 0, w) " 7y (G/P)

= A(w(v + 1), wog, wy) A(v + 1y, 00, w)A(w(v + 1), woy, w_l)
= A(wo(v + 1), woop, w)A(v + vy, 00, wo) A(w(v + 1), woy, w_l)
= A(wo(v + 1), woop, w) A(wwy (v + vy), wwyoo, w_l)A(w(l/ + 1), wag, wy)

= pu(wo(v + 1), wooo, w) 142 (G/P)A(w(v + 1), wog, wy).
We conclude that
(13) :u(% g, ’LU) = ,u(’w(](l/—l— VQ),’LU(]O'(],’LU)

for all v such that A(w(v+up), woy, wy) is holomorphic, and by analytic continuation,
for all v € af. Since ¢’ is a subrepresentation of iy, (wo(exp vy ® 0y)), the standard
intertwining operator A(v, o', w) is the restriction of A (v+wovy, weop, w). Therefore,

:U“(V> 0/7 'LU) = :U“(V + wolo, W0, 'LU)
and (13) implies
(wov, o, w) = p(v, o, w).

Finally, since wy € Weg and v € af, we see that wp - v = v (noting that it does not
matter whether v is viewed as an element of ai or (ag)& as far as this equality is
concerned.) The theorem follows. O

Remark 3.4. If oy is supercuspidal such that o — iy 00, then the proof of the
lemma tells us wo can be any element of We(Og) such that o’ — iy, (woy).
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4. DERIVED SUBGROUPS OF REDUCTIVE GROUPS

The normalization of standard intertwining operators we use is based on the results
of [KnSt], who work in the setting of semisimple groups. We would like to work in
the generality of reductive groups; the results in this section allow us to do so. Our
strategy is to reduce to the semisimple case via the derived subgroup.

We begin by introducing some notation. Let G’ denote the derived group, which is
semisimple. Without loss of generality, we may take X, X", A, W to be the same for
G' as G. If © C A has the associated standard parabolic subgroup P = MU, we let

PP=PNnG, M=PnM, etc.

(n.b.: P’ is not the derived subgroup of P, etc.). Then, P' = M'U’ is (the Levi
factorization of) the standard parabolic subgroup of G’ associated to ©. Further, one
has U' = U.

Suppose o is an irreducible admissible representation of M and v € ag. We let
V' =]y (¢/ = ang’) and choose o’ C Resy} o irreducible (by Lemma 2.1 [T], Res}s o
decomposes as a finite direct sum). If w € W such that w(©) C A, we let

c(v,o,w) = (v, 0,0)7,(G/P)
and
c(V, o', w) = p (Vo' w)yA (G P).
We have the following:
Proposition 4.1. ¢(v,0,w) = ¢V, o', w).
Proof. First, we claim
ResS, (IndS (exp v @ o)) = Ind$ (Resi, (exp v @ o).

This is a straightforward generalization of Lemma 1.1 [T]. The left-hand side acts on
(the smooth vectors of)

V=A{f:G— Vol f(pg) = 62 (p)(exp v @ 0)(p)f (9)}
by right translations. The right-hand side acts on (the smooth vectors of)

1
Vi={f: G =V | f'('g) = 62(p")(exp v @ o) (p) f(g)}
(noting that 6 = ¢’ on P’). The map
E: V-V
f — f|G/
gives the equivalence of the representations.
We now claim E behaves well with respect to standard intertwining operators. To
make this precise, let 7 = Ind%(exp v ® o) and 7’ = Ind$ (exp v/ ® o’). It follows
from the preceding discussion that 7’ is a subrepresentation of Res$, 7 which may be
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realized on the subspace V., C V, where Vv = {f € V|image(f|s) C Vo }. Let
Er = E oprojy . Then, an easy calculation (noting U = U’) gives

AWV, o'\ w)Ey = By A(v,0,w),
where 7! = Ind% (w(exp v/ ® ¢’)) and P, is the standard parabolic subgroup with

Levi factor w(M) (a G'-subrepresentation of m, = Indg, (w(exp v ® 0)).
Finally, since
AW, o, w)A(wV ,wo',w™t) = ¢V, o', w)l,
we have
AV, o', w)A(w/,wo', w ) Ey = c(V, 0, w)Eq .
On the other hand,
AW, o', w)A(w ,wo', w ) Ey = En A(v, 0, w)A(wr, wo,w™)

/
w
= B c(v,0,w)]

=c(v,0,w)Eq .
The proposition follows. O

Remark 4.2. [t follows from the preceding proposition that c(v', o', w) does not de-
pend on the particular o' C Res\ho used.

Lemma 4.3. The duality operators Dg, Dgr satisfy

Resg, oDg=Dg o Resg/
(where the equalities hold in the Grothendieck group).
Proof: We begin by observing that

Resy; o T™.G =r rqr © ResG/

M ; M, G
(an easy verification, noting U’ = U) and

Res, o oM = tqr gy O Res?,

G ; ; M

(cf. proof of Proposition 4.1). We now calculate:

Resl o Do = E (—1)®Res&) 0 icare © rro.c
ecA

ol - Mg
— E (-1)' |ZG/,M(/_) OReSMz OTM(_),G
OCcA

el; G
= E (—1)| |ZQ/7M(/_) oray.cr © Rescs
ecA

= D¢ o ResG,
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as needed. O

The preceding lemma tells us that (/0-’\) is a suitable choice for (6)". Since ¢ and o
have the same supercuspidal support, Theorem 3.3 implies the following:

Corollary 4.4.
c(v,0,w) = c(v,o,w).

5. NORMALIZING FACTORS

In this section, we relate normalizing factors for the intertwining operators under
consideration. Our approach is based on that of [KnSt], which constructs the nor-
malizing factor directly from the Plancherel measure. This has the advantage that we
can relate Plancherel measures associated to induced representations and their duals
under [Au], [ScSt]. (While it would be nice to do the normalizations via L-functions
as in [Sh2], this would require being able to track the data needed to calculate L-
functions through the duality operator—a difficult task.) Our normalized standard
intertwining operators will have the following properties, the first of which is crucial
to the results in [B3]:

(1) A(w v, wio,we)A(v, o, wy) = A(v, o, wawy)

2) A(v,o,w)* = A(—wr,wo,w™)
for suitable w, wy, wy (cf. Theorem 5.3). We now give some properties of the functions
¢(v, 0, w), which are defined as in section 4:

c(v,0,w) = p~H (v, 0,w) (G/P).
Lemma 5.1. ¢(v,0,w) has the following properties:

(1) C(V> g, 'LU) = C(_D> g, 'lU)
(2) c(v,o,w) >0 forv € iag.
Proof. Recall that

(14) A(v,o,w)* = A(—wi, wo, w™")
and
(15) A(v,o,w)A(wv,wo,w™) = c(v,o,w)I.

We now just follow the proof of Proposition 27, [KnSt|, properties (iv) and (v), page
528. From (15) and (14), we have

c(v,o,w)I = A(v, o, w)A(wr,wo,w™ ") = A(v, 0, w)A(=7, 0, w)*,
so ¢(v,0,w) > 0 for v purely imaginary. Apply * to (15) to get
c(v,o0,w)I = A(—v,0,w)A(—wv, wo,w™ ') = c(—v,0,w)I.

It follows that
c(v,o,w) = c(—v,0,w).
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We now turn to the construction of normalizing factors. First, suppose G is
semisimple and P = MU is a maximal parabolic subgroup (so dim(Ay/Ag) = 1).
Then, a is one-dimensional, so v € ag. is effectively a complex number. By the pre-
ceding lemma, the hypotheses of Lemma 36 [KnSt] are satisfied for ¢(v) = ¢(v, o, w).
Thus we obtain a normalizing factor vy(v) = (v, 0, w) as in Lemma 36 and Propo-
sition 37 [KnSt]. (More precisely, it is v~ (v, o, w) which is used for normalizations—
cf. Theorem 5.3.) The normalizing factors satisfy

7(_777 g, 'lU)’}/(l/, g, 'lU) = C(V> g, 'lU)
and
7(wy> wao, w_l) = 7(_777 g, 'lU)

We note that since c¢(v,6,w) = ¢(v,0,w) (an immediate consequence of Theorem
3.3), we may choose

f}/(]j’ 0/\-7 w) = ’}/(]j’ 07 w)'
Next, suppose G is no longer assumed to be semisimple, but is allowed to be
reductive (with dim(Ay/Ag) = 1). In light of Proposition 4.1, we take

,}/(V7 07 w) = ,}/(V/7 0/7 w)'
Corollary 4.4 then allows us to conclude that

Y(=v,0,w)y(v,0,w) = c(v, o, w),

and
,}/(V7 0/\-7 w) = ,}/(V7 07 w)'
Finally, suppose P = MU has dim(Ay/Ag) > 1. By Lemma 2.3, we have the
decomposition
(16) A(v,o,w) = A(Un, On, wy) ... A1y, 01, w01).
We define v(v, o, w) via a corresponding product of normalizing factors:
7(”7 g, 'lU) = V(VTH On, 'LUn) s 7(”17 01, 'LUl).

To define ~y(v;, 05, w;), observe that the intertwining operators appearing in (16) have
the form

A(vi, 00,wi) = g (A, (Vi, 01y wi)).
Since dim(Aw, .., (m)/An;) = 1, we may define
V(VZW Oi, wl) = ’}/Mi(ylﬁ Oi, wl)

(noting that it is not difficult to show, using Theorem 3.2, that c(v;, 0y, w;) = car, (vi, 04, w;)).
It remains to check that v(v, o, w) is well-defined. We do so in the following lemma:
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Lemma 5.2. Suppose ©,0" C A are associate. Take w € W(©,0). Fix a decompo-
sition w = wy, - - - wy as in Lemma 2.3. Define

7(”7 g, 'lU) = ’}/(Vn,O'n,'LUn) o "7(V1,0’1,U]1)-

Then (v, o,w) does not depend on the particular decomposition w = w, - - - wy, i.€.,
it 1s well-defined.

Proof. Let ay, ..., a, € A be the corresponding set of simple roots. Fix a;, 1 <i < n.
Let [3;] be as in (5) of Lemma 2.3. Suppose w = w,, - - - w} is another decomposition
of w and let o be the simple root corresponding to [3;] under Lemma 2.3 (5). Set

f— . . o o / p— / Y /
T=Wj-1"" W1, T =W; 1" W
Then ) = 2’7 (), o =12'o= 2’z o, and Vi =1y = 2’z ;. Tt follows that
_ ror
VMg, (Via Oy wi) - ’}/MQ; (Vj> O wj)'
Doing this for each i, we see that n < n'; working the same way from w/, - - - w] gives
n >n'. Thus n = n/, and the lemma follows. O
Observe that we also have
c(v,o,w) = c(Vp, op,wy) . .. c(vy, 01, w1)

(an easy consequence of Lemma 2.3 and Theorem 3.2). It then follows from the
corresponding properties in the case dim(Ay;/Ag) = 1 that

(17) Y(=v,0,w)y(v,0,w) = c(v, o, w),
and
(18) Y(wv, we,w™t) = (=, 0, w).

Theorem 5.3. The normalizing factors v(v, o, w) defined above satisfy
y(v,0,w) =v(v,0,w).
The normalized standard intertwining operators
Ay, 0,w) = v v, 0,w)A(v, 0, w)

have the following properties:
(1) A(v,o,w)* = A(—wi,wo,w™) forw e W(0,0)
(2) A(wiv, wio,wa) Ay, o,wy) = Ay, o,wowy) for wy € W(0,0") and wy €
W(@/’ @//)’

where ©,0', 0" are associate.
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Proof. We first show that v(v, o, w) = (v, d,w). We have

7(”7 g, 'lU) = ’}/Mn(yfhohnfwn) .- .’}/Ml(Vl,O'l,'lUl)-

The same argument tells us

7(”7 5-7 'LU) = ’YMn(Vrn 0%, 'LUn) s 7M1(V17 0¢1> 'LUl).
Since dim(Aw, ,..w, (m)/An;) = 1, we know that
Vo1, (Viy 03y w1) = Yo, (vi, Oy wy).
From this, we see that
,}/(V? 07 w) = ,}/(V? 0/\’7 w)'
The arguments needed for (1) and (2) are well-known (e.g., cf. [A2],[Sh2]); we include
them for completeness. We begin with (1). In the case dim(Ay;/Ag) = 1, (1) follows
from (14) and the identity (wv, wo, w™') = v(—v,0,w). In general,

A(v,o,w)* = [A(Vn, On,wy) ... A1, 01, w1)]*
= A(vy, 01, w)* ... AV, o, wy)*
= A(—wipy, wior, wit) ... A(—wnlp, Wpop, wit).
Now, observe that since ¢, = w,_1...wi0, we have w,o, = wo, and similarly for
—wyV,. Therefore, since w™' = w;'...w;! is a decomposition of w™! satisfying
Lemma 2.3, we have
Alv,0,w)* = A(—wp, wo,w™"),
as needed.

We now turn to (2). First, suppose w = wy € W(0,0') and u = we € W(6',0")
such that u is what might be called a generalized simple reflection—i.e., there exists an
a € A — 0 with ©” the conjugate of © in Q = ©' U {a}, conjugate by u = w; qw; e
If l(uw) = l(u) + l(w), the results follows immediately from the multiplicativity
property for unnormalized standard intertwining operators (Lemma 2.3 (3)) and that
for the normalizing factors (an easy consequence of Lemma 5.2). If not, we have
I(u™) + l(uw) = I(w). Then,

A(vwrv, uwo, u Ay, o,uw) = A(v, o, w).
Therefore,
A(wv, wo, u) A(vwr, vwo, u™ ") A(v, o, uw) = A(wv, wo, u)A(v, o, w).
Now, it follows from Theorem 3.2 and (17),(18) that
A(wv, wo, u) A(vwy, uwo, u™t) = 1.
Thus,
Ay, o, uw) = Alwr, wo, u)A(v, o, w),
as needed. The general case follows. O
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Remark 5.4. The preceding theorem tells us the normalizations used are suitable for
[B3].
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