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Abstract. For a non-connected reductive p-adic group, we prove that the Lang-

lands subrepresentation appears with multiplicity one in the representation par-

abolically induced from the corresponding Langlands data.

1. Introduction

The Langlands classification for a non-connected reductive p-adic group G [B-J1]
gives a bijective correspondence

Irr(G)←→ Lang(G)

between irreducible, admissible representations of G and triples of Langlands data.
Let (P, ν, τ ) be a set of Langlands data (see Definition 2.1) and suppose that π is the
irreducible representation of G corresponding to (P, ν, τ ),

π ←→ (P, ν, τ ).

Then π is the unique irreducible subrepresentation of the induced representation
iG,M(exp ν ⊗ τ ). This paper proves that the multiplicity of π in iG,M(exp ν ⊗ τ ) is
one (cf. Theorem 3.4). Our motivation goes beyond a general interest in extending
some useful properties of the Langlands classification to the non-connected case; we
have need of them in other work (cf. [B-J2],[J]).

Before closing the introduction, we would like to take the opportunity to thank M.
Tadić for conversations helpful to this work.

2. The Langlands classification

We take a moment to review the Langlands classification in the context of non-
connected p-adic groups (cf. [B-J1]; also see [B-W] and [S] for connected p-adic
groups, [L] for connected real groups, and [M] for non-connected real groups).

Let F be a p-adic field and G be the group of F -points of a quasi-split reductive
algebraic group defined over F . Let G0 denote the connected component of the
identity in G. Assume that

C = G/G0

is a finite abelian group.
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We call an irreducible representation of G tempered if its restriction to G0 is
tempered (cf. Definition 2.5 [B-J1]).

In the group G0, fix a Borel subgroup P∅ ⊂ G0 and a maximal split torus A∅ ⊂ P∅.
We let Π denote the corresponding set of simple roots. We can choose a set of
representatives for C which stabilize P∅, hence act on Π. By abuse of notation, we
use C for both the component group and this set of representatives.

For Φ ⊂ Π, we let PΦ = MΦUΦ denote the standard parabolic subgroup of G0

determined by Φ. Fix an order on Π. Then, there is a lexicographic order on subsets
of Π. We define

XC = {Φ ⊂ Π |Φ is maximal among {c · Φ}c∈C}.

Let C(Φ) = {c ∈ C | c · Φ = Φ} and

MΦ,C(Φ) = 〈MΦ, C(Φ)〉.

We call P = MUΦ, where MΦ ≤ M ≤ MΦ,C(Φ) and Φ ∈ XC , a standard parabolic
subgroup of G.

Suppose P is a standard parabolic subgroup of G. Write P 0 = PΦ. Let A be the
split component of MΦ, a the real Lie algebra of A, and a

∗ its dual. Let Π(P 0, A) ⊂ a
∗

denote the set of simple roots corresponding to the pair (P 0, A). We set

a
∗
− = {x ∈ a

∗ | 〈x, α〉 < 0, ∀α ∈ Π(P 0, A)},
a
∗
−(C) = {x ∈ a

∗
− |x � c · x, ∀c ∈ C(Φ)},

where 〈·, ·〉 is a C(Φ)-invariant inner product on a
∗ × a

∗ and � is the lexicographic
order inherited from the order on Π (cf. section 3 [B-J1] for details).

Definition 2.1. ([B-J1] Definition 4.1) A set of Langlands data for G is a triple
(P, ν, τ ) with the following properties:

1. P = MU is a standard parabolic subgroup of G.
2. ν ∈ a

∗
−(C).

3. M = MΦ,C(Φ,ν), where C(Φ, ν) = {c ∈ C(Φ) | c · ν = ν}.
4. τ ∈ Irr(M) is tempered.

For ν ∈ a
∗
−(C), let exp ν be the character of MΦ defined by exp ν = q〈ν,HΦ(·)〉, where

HΦ : MΦ → a is the homomorphism defined in [H] . If τ is a representation of M , then
exp ν⊗τ is the representation of M defined by (exp ν⊗τ )(mc) = exp ν(m)τ (mc) ([B-
J1] section 2). As in [B-Z], we let iG,M (τ ) denote the representation of G parabolically
induced from τ .

Theorem 2.2. (Langlands classification, [B-J1] Theorem 4.2)
There is a bijective correspondence

Lang(G)←→ Irr(G),
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where Lang(G) denotes the set of all triples of Langlands data. Further, if (P, ν, τ )↔
π under this correspondence, then π is the unique irreducible subrepresentation of
iG,M(exp ν ⊗ τ ).

If (P, ν, τ ) ↔ π, then we call π the Langlands subrepresentation corresponding to
(P, ν, τ ).

3. Multiplicity one

We now take up the proof of multiplicity one for the Langlands classification.
In what follows, it will occasionally be convenient to work in the Grothendieck

group setting. Recall that in this context, we write π1 ≤ π2 if m(τ, π1) ≤ m(τ, π2)
for every smooth, irreducible representation τ of G, where m(τ, π) =multiplicity of τ
in π.

Let a0 denote the real Lie algebra of A∅ and a
∗
0 its dual. Recall that for a standard

parabolic subgroup, we may identify a
∗ as a subspace of a

∗
0. Let > be the order from

section XI.2 [B-W], i.e.,

µ > ν if 〈µ − ν, α〉 > 0, for all α ∈ Π,

or equivalently, µ− ν ∈ (a∗
0)+. We write µ ≥ ν if 〈µ − ν, α〉 ≥ 0, for all α ∈ Π. Note

that µ ≥ ν and ν ≥ µ imply that µ − ν is in the center of a
∗
0 (e.g., see [B-W], XI.1).

Lemma 3.1. Let µ, ν ∈ a
∗
0.

1. If µ > ν, then c · µ > c · ν, for all c ∈ C.
2. For all c ∈ C, µ 6> c · µ and µ 6< c · µ.

Proof. 1. This follows immediately from the fact that c ·Π = Π and the fact that the
inner product on a

∗
0 × a

∗
0 may be taken to be C-invariant (cf. section 2 [B-J1]).

2. Suppose µ > c · µ, for some c ∈ C . Let m be the order of c. Then, according to
1., µ > c · µ implies c · µ > c2 · µ, c2 · µ > c3 · µ, etc. Thus,

µ > c · µ > c2 · µ > · · · > cm · µ = µ,

a contradiction. �

We now define an ordering on the C-orbits in a
∗
0 and show it is well-defined.

Definition 3.2. Let µ, ν ∈ a
∗
0. We write C · µ > C · ν if c1 · µ > c2 · ν, for some

c1, c2 ∈ C.

Lemma 3.3. The ordering in Definition 3.2 is well-defined. In particular, suppose
µ, ν ∈ a

∗
0. Then, the folowing hold:

1. If C · µ > C · ν, then C · ν 6> C · µ.
2. C · µ 6> C · µ.
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Proof. 1. Suppose C · µ > C · ν and C · ν > C · µ. According to Lemma 3.1, there
exist c1, c2 ∈ C such that µ > c1 · ν and ν > c2 · µ. Then, by Lemma 3.1, 1.,

µ > c1 · ν > c1c2 · µ,

which is a contradiction (Lemma 3.1, 2).
2. Follows from Lemma 3.1, 2. �

Theorem 3.4. Let π be an irreducible representation of G having Langlands data
(P, ν, τ ). Then,

1. π appears with multiplicity one in iG,M (exp ν ⊗ τ ).
2. Suppose that θ is an irreducible component of iG,M(exp ν ⊗ τ ) with Langlands

data (Pθ, νθ, τθ). Then, C · ν < C · νθ or ν = νθ. Further, equality occurs if and
only if θ ∼= π.

Proof. Let

G0 = G0 ⊂ G1 ⊂ · · · ⊂ Gk = G,

where |Gi/Gi−1| is prime for i = 1, . . . , k. Recall that the proof of the Langlands
classification in [B-J1] follows the lead of [G-H], using a result of [G-K] (cf. Lemma
2.1 [B-J1] for a precise formulation) to work inductively up the filtration. Thus, as
in [B-J1], we argue inductively, assuming that multiplicity one holds for Gi−1 and
showing that it holds for Gi. Multiplicity one for the connected group G0 is classical
result (e.g., see [B-W]).

For convenience, let G1 ⊂ G2 be two consecutive groups in the filtration above (not
necessarily the first two). Then G1/G

0 = C1 and G2/G
0 = C2 with C1 ⊂ C2 ⊂ C

and |C2/C1| prime. Write D = C2/C1.
Let π1 be an irreducible representation of G1 with Langlands data (P1, ν1, τ1).

Write P 0
1 = PΦ1 . For i = 1, 2, let

Ci(Φ1) = {c ∈ Ci | c · Φ1 = Φ1},
Ci(Φ1, ν1) = {c ∈ Ci | c · Φ1 = Φ1 and c · ν1 = ν1},

Ci(Φ1, ν1, τ1) = {c ∈ Ci | c · Φ1 = Φ1, c · ν1 = ν1 and c · τ1 = τ1}.

According to [B-J1], Lemma 4.3, we have either C2(·) = C1(·) or C2(·)/C1(·) ∼= D.

Lemma 3.5. Assume Theorem 3.4 holds for G1. Let π2 be an irreducible represen-
tation of G2 having Langlands data (P2, ν2, τ2). Then, π2 appears with multiplicity
one in iG2,M2(exp ν2 ⊗ τ2).

Proof. Let π1 be an irreducible subquotient of rG1,G2(π2). We denote its Langlands
data by (P1, ν1, τ1). Recall that the proof of the Langlands classification in [B-J1]
considers four cases:

1. C2(Φ1) = C1(Φ1).
2. C2(Φ1) 6= C1(Φ1) but C2(Φ1, ν1) = C1(Φ1, ν1).
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3. C2(Φ) 6= C1(Φ), C2(Φ, ν1) 6= C1(Φ, ν1) but C2(Φ, ν1, τ1) = C1(Φ, ν1, τ1).
4. C2(Φ) 6= C1(Φ), C2(Φ, ν1) 6= C1(Φ, ν1), C2(Φ, ν1, τ1) 6= C1(Φ, ν1, τ1).

We claim the following: If c ∈ C2 and c · π1 ≇ π1, then c · π1 is not a subquotient
of iG1,M1(exp ν1 ⊗ τ1). If (P1, ν1, τ1) fits into case 1 above, then c · π1 has Langlands
data (c · P1, c · ν1, c · τ1) (cf. Proposition 4.5 [B-J1]). However, if θ1 is an irreducible
subquotient of iG1,M1(exp ν1⊗τ1) having Langlands data (Pθ1 , νθ1 , τθ1), then Theorem
3.4 for G1 implies C1 · νθ1 > C1 · ν1 or νθ1 = ν1, θ1

∼= π1. Since this is not the case for
c·π1 (cf. Lemma 3.1 2.), it follows that c·π1 is not a subquotient of iG1,M1(exp ν1⊗τ1).
The argument when (P1, ν1, τ1) is case 2 is essentially identical. The only remaining
possibility is case 3 (case 4 has c · π1

∼= π1, for all c ∈ C2). We note that in this case
νc·π1 = c · ν1 = ν1. Since π1 is the only irreducible subquotient of iG1,M1(exp ν1 ⊗ τ1)
having exponent ν1 (Theorem 3.4 for G1), we see that c · π1 is not a subquotient of
iG1,M1(exp ν1 ⊗ τ1), finishing the claim.

We first consider the cases which have iG2,G1(π1) ∼= π2, that is, when (P1, ν1, τ1) is
case 1, 2 or 3. In these three cases, we claim that

iG2,G1 ◦ iG1,M1(exp ν1 ⊗ τ1) ∼= iG2,M2(exp ν2 ⊗ τ2).

For case 1, recall from [B-J1] that (P2, ν2, τ2) = (c · P1, c · ν1, c · τ1), for some c ∈ C2.
By Lemma 4.4 [B-J1] (noting that the “not” in its proof is a typo),

iG1,c·M1(exp c · ν1 ⊗ c · τ1) ∼= c · iG1,M1(exp ν1 ⊗ τ1).

Therefore,

iG2,M2(exp ν2 ⊗ τ2) ∼= iG2,G1 ◦ iG1,c·M1(exp c · ν1 ⊗ c · τ1)
∼= iG2,G1 ◦ c ◦ iG1,M1(exp ν1 ⊗ τ1)
∼= iG2,G1 ◦ iG1,M1(exp ν1 ⊗ τ1),

as claimed. For case 2, (P2, ν2, τ2) = (P1, c · ν1, c · τ1), for some c ∈ C2. The argument
is almost identical to that for case 1; we omit the details. For case 3, (P2, ν2, τ2) =
(PΦ,C2(Φ,ν1), ν1, iMΦ,C2(Φ,ν1),M1(τ1)). In this case,

iG2,MΦ,C2(Φ,ν1)
(exp ν1 ⊗ iMΦ,C2(Φ,ν1),M1(τ1)) ∼= iG2,M1(exp ν1 ⊗ τ1)

∼= iG2,G1 ◦ iG1,M1(exp ν1 ⊗ τ1),

as needed.
To see multiplicity one for cases 1, 2 and 3, write

iG1,M1(exp ν1 ⊗ τ1) = π1 +
∑

i

θ
(i)
1

in the Grothendieck group. From the preceding claim,

iG2,M2(exp ν2 ⊗ τ2) = iG2,G1(π1) +
∑

i

iG2,G1(θ
(i)
1 ).
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Observe that iG2,G1(π1) ∼= π2. Theorem 3.4 for G1 tells us that π1 6= θ
(i)
1 . Further,

c · π1 ≇ π1 is not a subquotient of iG2,M1(exp ν1 ⊗ τ1). Therefore, π2 appears with
multiplicity one in iG2,M2(exp ν2 ⊗ τ2).

We now consider the remaining case, that is, when (P1, ν1, τ1) is case 4. In this
case, we have

iG2,M1(exp ν1 ⊗ τ1) ∼= iG2,MΦ,C2(Φ,ν1)
(exp ν1 ⊗

⊕

χ∈D̂

χ τ2).

Thus, it suffices to show that π2 appears with multiplicity one in iG2,M1(exp ν1⊗ τ1).
Write

iG1,M1(exp ν1 ⊗ τ1) = π1 +
∑

i

θ
(i)
1 .

Then,

iG2,M2(exp ν2 ⊗ τ2) = iG2,G1(π1) +
∑

i

iG2,G1(θ
(i)
1 )

in the Grothendieck group. Observe that iG2,G1(π1) contains one copy of π2, and π2

is not a subquotient of iG2,G1(θ
(i)
1 ) (by multiplicity one for G1 and the fact that if θ1

is irreducible such that π2 is a subquotient of iG2,G1(θ1), then θ1
∼= π1). Therefore, π2

appears with multiplicity one in iG2,M2(exp ν2 ⊗ τ2), as needed. �

Lemma 3.6. Assume Theorem 3.4 holds for G1. Let (P1, ν1, τ1) be a set of Lang-
lands data for G1, with corresponding Langlands subrepresentation π1. Let θ1 be an
irreducible subquotient of iG1,M1(exp ν1 ⊗ τ1). Suppose

π ≤ iG2,G1(π1), θ ≤ iG2,G1(θ1)

are irreducible subquotients with Langlands data (P, ν, τ ) and (Pθ, νθ, τθ), respectively.
Then C2 · ν ≤ C2 · νθ. Further, if equality occurs, then θ is a component of iG2,G1(π1).

Proof. Let (Pθ1 , νθ1 , τθ1) be the Langlands data for θ1. From the construction of
Langlands data in [B-J1], we have νθ = cθ · νθ1 and ν = cπ · ν1, for some cθ, cπ ∈ C2.
Since θ1 is a subquotient of iG1,M1(exp ν1 ⊗ τ1), Theorem 3.4 for G1 tells us C1 · ν1 <
C1 · νθ1 or ν1 = νθ1 , with equality if and only if θ1

∼= π1. Therefore, C2 · ν ≤ C2 · νθ,
as claimed. Further, if equality occurs, then θ ≤ iG2,G1(θ1) ∼= iG2,G1(π1). �

Lemma 3.7. Assume Theorem 3.4 holds for G1. Let (P2, ν2, τ2) be a set of Langlands
data for G2 and π2 the corresponding Langlands subrepresentation. Suppose θ is an
irreducible subquotient of iG2,M2(exp ν2⊗ τ2) having Langlands data (Pθ, νθ, τθ). Then
C2 · ν2 < C2 · νθ or ν2 = νθ. Further, if equality occurs, then θ ∼= π2.

Proof. Recall from the proof of the Langlands classification in the non-connected case
that there are three possibilities: If P1 = P2 ∩G1, we may have

1. P2 = P1.
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2. P2 6= P1 and rM1,M2(τ ) is reducible.
3. P2 6= P1 and rM1,M2(τ ) is irreducible.

We break the proof into these three cases.
In case 1, (P2, ν2, τ2) = (P1, ν1, τ1) is also a set of Langlands data for G1; let π1

denote the corresponding Langlands subrepresentation. Then, π2
∼= iG2,G1(π1). If θ

is an irreducible subquotient of iG2,M2(exp ν2 ⊗ τ2), then

θ ≤ iG2,M2(exp ν2 ⊗ τ2) ∼= iG2,G1 ◦ iG1,M1(exp ν1 ⊗ τ1),

so θ is a subquotient of iG2,G1(θ1) for some irreducible θ1 ≤ iG1,M1(exp ν1⊗τ1). Lemma
3.6 implies C2 · ν2 ≤ C2 · νθ. Further, if equality occurs, then θ ≤ iG2,G1(π1) ∼= π2, so
θ ∼= π2 and νθ = ν2.

In the second case, let ν1 = ν2 and let τ1 be an irreducible subquotient of rM1,M2(τ2).
Then (P1, ν1, τ1) is a set of Langlands data for G1; let π1 denote the corresponding
Langlands subrepresentation. We have π2

∼= iG2,G1(π1). If θ is an irreducible subquo-
tient of iG2,M2(exp ν2 ⊗ τ2), then (noting iM2,M1(τ1) ∼= τ2)

θ ≤ iG2,M2(exp ν2 ⊗ τ2) ∼= iG2,M2(exp ν2 ⊗ iM2,M1(τ1))
∼= iG2,M1(exp ν1 ⊗ τ1) ∼= iG2,G1 ◦ iG1,M1(exp ν1 ⊗ τ1),

so θ is a subquotient of iG2,G1(θ1) for some irreducible θ1 ≤ iG1,M1(exp ν1 ⊗ τ1). The
result then follows from Lemma 3.6 in the same way as in case 1.

In case 3, let ν1 = ν2 and τ1 = rM1,M2(τ2). Then (P1, ν1, τ1) is a set of Langlands
data for G1; let π1 denote the corresponding Langlands subrepresentation. Then,

iG2,G1(π1) =
⊕

χ∈D̂

χ π2.

Observe that

iG2,G1 ◦ iG1,M1(exp ν1 ⊗ τ1) ∼= iG2,M2(exp ν2 ⊗
⊕

χ∈D̂

χ τ2).

Write iG1,M1(exp ν1 ⊗ τ1) = π1 +
∑

i

θ
(i)
1 in the Grothendieck group. Then

iG2,G1 ◦ iG1,M1(exp ν1 ⊗ τ1) = iG2,G1(π1) +
∑

i iG2,G1(θ
(i)
1 )

=
∑

χ∈D̂ χ π2 +
∑

i iG2,G1(θ
(i)
1 ).

If χπ2 ≤ iG2,G1(θ
(i)
1 ), then π1 = θ

(i)
1 , which contradicts multiplicity one for G1. Thus,

for each χ ∈ D̂, we have χ π2 occurs with multiplicity one in iG2,G1 ◦iG1,M1(exp ν1⊗τ1),
hence with multiplicity one in

⊕
χ∈D̂ iG2,M2(exp ν2 ⊗ χ τ2). Now,

iG2,M2(exp ν2 ⊗ χ τ2) ∼= χ ◦ iG2,M2(exp ν2 ⊗ τ2)

contains χ π2 with multiplicity one. In particular, this means iG2,M2(exp ν2 ⊗ τ2)
contains π2 with multiplicity one and no χ π2 with χ 6= 1.
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Let θ be an irreducible subquotient of iG2,M(exp ν ⊗ τ ). By Lemma 3.6, C2 · ν2 ≤
C2 · νθ. Further, if C2 · ν2 = C2 · νθ (in the ordering), then θ is a subquotient of
iG2,G1(π1), so θ ∼= χ π2, for some χ. Since iG2,M2(exp ν2 ⊗ τ2) contains no χ π2 with
χ 6= 1, it follows that θ ∼= π2 and νθ = ν2. �

Theorem 3.4 now follows from Lemmas 3.5, 3.7, and induction. �

Corollary 3.8. In the Grothendieck group, any irreducible representation may be
written as a linear combination of standard induced representations, i.e., of represen-
tations having the form iG,M(exp ν ⊗ τ ) with (P, ν, τ ) Langlands data.

Remark 3.1. As noted in Remark 4.2 [B-J1], the Langlands classification may also
be formulated in the quotient setting. In this setting, Theorem 3.4 and Corollary 3.8
hold, with only the change C · ν > C · θ in Theorem 3.4 2. required.
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