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DEGENERATE PRINCIPAL SERIES
FOR EVEN-ORTHOGONAL GROUPS

DUBRAVKA BAN AND CHRIS JANTZEN

Abstract. Let F be a p-adic field of characteristic 0 and G = O(2n, F ) (resp.
SO(2n, F )). A maximal parabolic subgroup of G has the form P = MU , with

Levi factor M ∼= GL(k, F )×O(2(n− k), F ) (resp. M ∼= GL(k, F )×SO(2(n−
k), F )). We consider a one-dimensional representation of M of the form χ ◦
detk ⊗ triv(n−k), with χ a one-dimensional representation of F×; this may be
extended trivially to get a representation of P . We consider representations
of the form IndGP (χ ◦ detk ⊗ triv(n−k)) ⊗ 1. (Our results also work when

G = O(2n, F ) and the inducing representation is (χ◦detk⊗det(n−k))⊗1, using

det(n−k) to denote the nontrivial character of O(2(n−k), F ).) More generally,
we allow Zelevinsky segment representations for the inducing representations.

In this paper, we study the reducibility of such representations. We de-
termine the reducibility points, give Langlands data and Jacquet modules for
each of the irreducible composition factors, and describe how they are ar-
ranged into composition series. For O(2n, F ), we use Jacquet module methods
to obtain our results; the results for SO(2n, F ) are obtained via an analysis of
restrictions to SO(2n, F ).

1. Introduction

Let F be a p-adic field with charF = 0.
The basic purpose of this paper is to study degenerate principal series for

O(2n, F ) and SO(2n, F ) (though we work in a more general setting, what might be
called generalized degenerate principal series). This paper completes the analysis
of reducibility for degenerate principal series for classical p-adic groups; the corre-
sponding results for SL(n, F ) (cf. [B-Z] and [Tad1]), Sp(2n, F ) and SO(2n+ 1, F )
(cf. [Jan3]) are already known. We remark that while a fair amount of work on
degenerate principal series for Sp(2n, F ), SO(2n + 1, F ) had been done prior to
[Jan3] (cf. [Gus], [K-R], [Jan1], [Jan2], [Tad4]), relatively little has been done for
SO(2n, F ) or O(2n, F ) (though [Jan2] contains some results for SO(2n, F )). There
are also results on degenerate principal series available for other p-adic groups (e.g.,
see [Mu], [K-S], [Ch]). For real and complex groups, there is significantly more avail-
able on degenerate principal series; we refer the reader to [H-L] for a discussion of
these cases.

In [Jan3] (generalized) degenerate principal series for SO(2n+ 1, F ), Sp(2n, F )
are analyzed. Structural similarities between the two families of groups allow them
to be treated together. A careful study of Jacquet modules—made possible by the
results from [Tad3]—allowed us to determine the number of irreducible subquotients
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and give their Langlands data. This, in turn, made it possible to reconstruct the
composition series.

These structural similarities are shared by O(2n, F ) (but not SO(2n, F )). Thus,
we first focus on (generalized) degenerate principal series for O(2n, F ). Now, there
were two obstacles to including O(2n, F ) in [Jan3]: (1) the Jacquet module results
in [Tad3] did not apply to O(2n, F ), and (2) the Langlands classification required
the underlying algebraic group to be connected. Since then, the Jacquet module
structures of [Tad3] have been extended to O(2n, F ) (cf. [Ban1]); the Langlands
classification was extended (to quasi-split groups with abelian component group) in
[B-J1]. (We also need multiplicity one for the Langlands classification; for O(2n, F ),
this follows from [B-J2] or the argument for Lemma 3.4 in [Jan4].) Thus, generalized
degenerate principal series for O(2n, F ) may be handled in exactly the same manner
as in [Jan3].

We do our analysis for SO(2n, F ) by using [G-K] to study restrictions of represen-
tations from O(2n, F ) to SO(2n, F ). (This approach to the study of representations
of non-connected groups has been used by [Gol2], [G-H], e.g., though they use infor-
mation for the connected component to obtain information for the non-connected
group.) The key tools for doing our analysis are Proposition 4.5 in [B-J1] and the
results of section 2 [G-K]. If π is an irreducible representation of O(2n, F ), these
allow us to obtain the Langlands data for the component(s) of π|SO(2n,F ) from the
Langlands data for π.

Let us now discuss the contents in greater detail. In the next section, we in-
troduce notation and review some results which will be needed in the rest of the
paper.

We begin by discussing the generalized degenerate principal series for O(2n, F )
considered in this paper. As in [B-Z], we let ν = |det| for general linear groups and
use × to denote parabolic induction (cf. section 2 for a more detailed explanation).
If ρ0 is an irreducible, unitary, supercuspidal representation of GL(r0, F ), then

ν
−k+1

2 ρ0 × ν
−k+1

2 +1ρ0 × · · · × ν
k−1

2 ρ0

has a unique irreducible subrepresentation which we denote by ζ(ρ0, k). We note
that if ρ0 = 1F× , we have ζ(ρ0, k) = trivGL(k,F ). As in [Tad2], we use o to denote
parabolic induction for classical groups (cf. section 2 for a more detailed explana-
tion). Let ρ be an irreducible, unitary, supercuspidal representation of GL(r, F )
and σ an irreducible, supercuspidal representation of O(2m,F ) (or Sp(2m,F ),
SO(2m + 1, F ), SO(2m,F )). (We note that such a σ is necessarily unitarizable.)
We say (ρ, σ) satisfies (C0) if (1) ρ o σ is reducible and (2) νxρ o σ is irreducible
for all x ∈ R \ {0}. If (ρ, σ) satisfies (C0), then

ν−`+1ρ× ν−`+2ρ× · · · × ν−1ρ× ρo σ
has two irreducible subrepresentations which we denote ζ1(ρ, `;σ) and ζ2(ρ, `;σ).
We note that if ρ = 1F× and σ = 1O(0,F ) (with O(0, F ) the trivial group), then
ζ1(ρ, `;σ) = trivO(2`,F ) and ζ2(ρ, `;σ) = detO(2`,F ).

In the third section, we discuss the generalized degenerate principal series
ναζ(ρ0, k)o ζi(ρ, `;σ), α ∈ R, for O(2n, F ). The case ρ0

∼= ρ is covered by Propo-
sition 3.2 (for k = 1, ` ≥ 1), Proposition 3.3 (for ` = 0, k ≥ 2), and Theorem 3.4
(for k ≥ 2, ` ≥ 1). The case ρ0 6∼= ρ is covered by Theorem 3.5 and Remark 3.6.
In particular, we determine for which values of α reducibility occurs. When there
is reducibility, we identify the irreducible subquotients (by giving their Langlands
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data), describe their composition series structure, and give information on their
Jacquet modules.

At this point, several remarks are in order. First, the arguments needed to
obtain the results in section 3 are essentially the same as those used in [Jan3]. For
this reason, we are rather brief in our discussion; we are content to summarize
the results, with suitable references to [Jan3], and thereby avoid repeating long
arguments which contain nothing new. Second, the roles of ζ1(ρ, `;σ) and ζ2(ρ, `;σ)
are interchangeable; either can serve as the ζ1(ρ, `;σ) in the results. Thus, section 3
may also be used to deal with degenerate principal series where the one-dimensional
representation of the orthogonal group is det rather than triv. Finally, the results
of section 3 apply equally well to Sp(2n, F ) and SO(2n + 1, F ). However, for
these groups, the results do not say anything about degenerate principal series.
The difference lies in the conditions on (ρ, σ): For degenerate principal series we
want ρ = 1F× and σ trivial (for the rank 0 classical group, i.e., the trivial group).
For O(2n, F ), this means (ρ, σ) satisfies (C0); for Sp(2n, F ), SO(2n + 1, F ), this
requires that (ρ, σ) satisfies (C1/2), (C1), respectively (cf. [Jan3] for a more detailed
discussion regarding Sp(2n, F ), SO(2n+ 1, F )).

Our analysis of generalized degenerate principal series for SO(2n, F ) is done
by combining the results for O(2n, F ) (section 3) with results on the restriction of
representations fromO(2n, F ) to SO(2n, F ) (section 4). We note that our results on
restriction from O(2n, F ) to SO(2n, F ) are built in part on the results of section 2
[G-K] and Proposition 4.5 [B-J1]. In particular, in combination these may be used
to tell, from the Langlands data of an irreducible representation π of O(2n, F ),
whether its restriction to SO(2n, F ) is reducible and determine the Langlands data
of the components of the restriction.

Included in section 4 is a discussion of cuspidal reducibility. We recall what this
means for Sp(2n, F ), SO(2n+1, F ). Suppose ρ is an irreducible, unitary, supercus-
pidal representation of GL(r, F ) and σ an irreducible supercuspidal representation
of Sp(2m,F ) or SO(2m+ 1, F ). If ρ 6∼= ρ̃ (ρ̃ the contragredient of ρ), then νxρo σ
is irreducible for all x ∈ R; if ρ ∼= ρ̃, there exists a unique α(ρ, σ) ≥ 0 such that
ναρoσ is reducible (cf. [Sil2], [Sil3]). Characterizations of the cuspidal reducibility
α(ρ, σ) (based on certain conjectures) are given in [Mœ], [Zh]. (Also noteworthy
are the results of [Sh1], [Sh2] in the generic case and the examples from [M-R] and
[Re].) Using our study of restriction/induction between SO(2n, F ) and O(2n, F ),
the results of [Mœ], [Zh] may be extended to O(2n, F ) (cf. Corollary 4.4), noting
that [Mœ], [Zh] also deal with cuspidal reducbility for SO(2n, F ). This is obtained
from Proposition 4.3, which relates the cuspidal reducibility for (ρ, σ) to that of
(ρ, σ0), where σ0 is a component of the restriction of σ to SO(2m,F ).

In section 5, we deal with generalized degenerate principal series for SO(2n, F ).
Here, we have two situations to consider. Suppose (ρ, σ) (σ an irreducible, su-
percuspidal representation of O(2m,F )) satisfies (C0). Let σ0 be a component of
the restriction of σ to SO(2m,F ). Then, either (1) (ρ, σ0) satisfies (C0), or (2)
νxρo σ0 is irreducible for all x ∈ R (cf. Proposition 4.3 for a precise characteriza-
tion). In the first case (i.e., (ρ, σ0) (C0)), the generalized degenerate principal series
ναζ(ρ0) o ζ1(ρ, `;σ0) (for SO(2n, F )) behave like the generalized degenerate prin-
cipal series ναζ(ρ0)o ζ1(ρ, `;σ) (for O(2n, F )). In fact, the results are sufficiently
similar such that we include their statements in section 3, although the proofs are
in section 5. In the second case (i.e., νxρo σ0 irreducible for all x ∈ R), the results
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are not as similar. In this case, the results on generalized degenerate principal
series for ρ0

∼= ρ are given in Proposition 5.1 (for k = 1, ` ≥ 1), Proposition 5.2
(for ` = 0, k ≥ 2), and Theorem 5.3 (for k ≥ 2, ` ≥ 1). The results for ρ0 6∼= ρ are
covered by Theorem 5.5 and Remark 5.6. Jacquet module information is included
in Propositions 5.1 and 5.2. For Theorems 5.3 and 5.5, a brief discussion of how
to calculate Jacquet modules is given in Remark 5.4. We note that this is the case
which includes the actual degenerate principal series for SO(2n, F ).

We close this introduction with a sort of user’s guide, to help easily find the
appropriate results on degenerate principal series. For O(2n, F ), the results on
degenerate principal series of the form Ind(|detGL(k,F )|x ⊗ trivO(2`,F )) (x ∈ R)
may be found by taking ρ = 1F× and σ = 1O(0,F ) (O(0, F ) is the trivial group) in
Proposition 3.2 (for k = 1), Proposition 3.3 (for ` = 0), or Theorem 3.4 (when k ≥ 2
and ` ≥ 1). The results for degenerate principal series of the form Ind(|detGL(k,F )|x ·
(χ ◦ detGL(k,F )) ⊗ trivO(2`,F )) (χ a unitary character of F×) may be found by
taking ρ0 = χ, ρ = 1F× , σ = 1O(0,F ) in Theorem 3.5 (if χ is of order two) or
Remark 3.6 (if order χ > 2). To deal with degenerate principal series of the form
Ind(|detGL(k,F )|x · (χ ◦ detGL(k,F ))⊗ detO(2`,F )), use the same results, but with the
roles of ζ1(ρ, `;σ) and ζ2(ρ, `;σ) reversed.

For SO(2n, F ), the results on degenerate principal series of the form
Ind(|detGL(k,F )|x ⊗ trivSO(2`,F )) (x ∈ R) may be found by taking ρ = 1F× and
σ = 1SO(0,F ) (SO(0, F ) is the trivial group) in Proposition 5.1 (for k = 1), Proposi-
tion 5.2 (for ` = 0), or Theorem 5.3 (when k ≥ 2 and ` ≥ 1). The results for degen-
erate principal series of the form Ind(|detGL(k,F )|x ·(χ◦detGL(k,F ))⊗trivSO(2`,F )) (χ
a unitary character of F×) may be found by taking ρ0 = χ, ρ = 1F× , σ = 1SO(0,F )

in Theorem 5.5 (if χ is of order two) or Remark 5.6 (if order χ > 2).

Acknowledgment. We would like to close by thanking the referees for valuable
comments and corrections.

2. Preliminaries

In this section, we introduce notation and state the Langlands classification
for SO(2n, F ) and O(2n, F ). An explanation how such a form of the Langlands
classification follows from the general results in [B-J1] can be found in the Appendix.

Let F be a p-adic field with charF = 0. We make use of results from [Gol1],
[Gol2] in this paper, hence we need this assumption.

In most of this paper, we work with the components (irreducible subquotients)
of a representation rather than with the actual composition series. Suppose that
π1, π2 are smooth finite length representations. We write π1 = π2 if π1 and π2 have
the same components with the same multiplicities. We write π1

∼= π2 if π1 and π2

are actually equivalent.
The special orthogonal group SO(2n, F ), n ≥ 1, is the group

SO(2n, F ) = {X ∈ SL(2n, F ) | τXX = I2n} .

Here τX denotes the matrix of X transposed with respect to the second diagonal.
For n = 1, we get

SO(2, F ) =
{[

λ 0
0 λ−1

]∣∣∣∣λ ∈ F×} ∼= F×.
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SO(0, F ) is defined to be the trivial group. The orthogonal group O(2n, F ), n ≥ 1,
is the group

O(2n, F ) = {X ∈ GL(2n, F ) | τXX = I2n} .
We have

O(2n, F ) = SO(2n, F )o {1, s},
where

s =


I

0 1
1 0

I

 ∈ O(2n, F )

and it acts on SO(2n, F ) by conjugation. We take O(0, F ) to be the trivial group.
In the group SO(2n, F ), fix the minimal parabolic subgroup P∅ consisting of all

upper triangular matrices in SO(2n, F ) and the maximal split torus A∅ consisting
of all diagonal matrices in SO(2n, F ).

Let M0 be the standard Levi subgroup of G0 = SO(2n, F ). We denote by
iG0,M0 the functor of parabolic induction and by rM0,G0 the Jacquet functor (cf.
[B-Z]). Let G = O(2n, F ). We use the notation iG,G0 and rG0,G for induction and
restriction of representations.

Suppose that ρ1, . . . , ρk are representations of GL(n1, F ), . . . , GL(nk, F ) and τ0
a representation of SO(2m,F ). Let G0 = SO(2n, F ), where n = n1 + · · ·+nk +m.
Let

M0 =
{
diag(g1, ..., gk, h,

τg−1
k , ..., τg−1

1 ) | gi ∈ GL(ni, F ), h ∈ SO(2m,F )
}
.

Then M0 is a standard Levi subgroup of G0 (cf. Appendix or [Ban2]). Following
[B-Z], [Tad2], set

ρ1 × · · · × ρk o τ0 = iG0,M0(ρ1 ⊗ · · · ⊗ ρk ⊗ τ0).

If m = 0 and nk > 1, then sM0s is another standard Levi subgroup of G0. Let 10

denote the trivial representation of SO(0, F ). We write ρ1⊗ · · ·⊗ ρk−1⊗ s(ρk⊗ 10)
for the corresponding representation of sM0s. According to [Ban2],

s(ρ1 × · · · × ρk o 10) = ρ1 × · · · × ρk−1 o s(ρk o 10)

= iG0,sM0s(ρ1 ⊗ · · · ⊗ ρk−1 ⊗ s(ρk ⊗ 10)).

As in [B-Z], we set ν = |det| for general linear groups. Let ρ be an irreducible
representation of GL(n, F ). We say that ρ is essentially square-integrable (resp.,
essentially tempered) if there exists e(ρ) ∈ R such that ν−e(ρ)ρ is square-integrable
(resp., tempered).

Now, we discuss the Langlands classification for SO(2n, F )(cf. Appendix). Let
ρi, i = 1, . . . , k, be irreducible essentially square-integrable representations of
GL(ni, F ) and τ0 an irreducible tempered representation of SO(2m,F ). Suppose
that m ≥ 1 and e(ρ1) ≤ · · · ≤ e(ρk) < 0. Then the representation ρ1× · · ·× ρko τ0
has a unique irreducible subrepresentation which we denote by L(ρ1, . . . , ρk; τ0).
(We note that this formulation—using weak inequalities with essentially square-
integrable representations in lieu of strict inequalities with essentially tempered
representations—follows easily from the fact that an irreducible tempered repre-
sentation of GL(n, F ) has the form δ1 × · · · × δj with δi irreducible and square-
integrable.) If m = 0, then

sL(ρ1, . . . , ρk; 10) � L(ρ1, . . . , ρk; 10).
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We have sL(ρ1, . . . , ρk; 10) = L(s(ρ1⊗· · ·⊗ . . . ρk⊗10)). Both ρ1⊗· · ·⊗ρk⊗10 and
s(ρ1⊗· · ·⊗ρk⊗10) appear in (2) and (3) of Proposition 6.3, i.e., constitute Langlands
data. Further, any Langlands datum in (2) or (3) of Proposition 6.3 may be written
as either ρ1⊗· · ·⊗ρk⊗10 or s(ρ1⊗· · ·⊗ρk⊗10) with ρ1, . . . , ρk as above. To simplify
notation, etc., we write sL(ρ1, . . . , ρk; 10) rather than L(s(ρ1 ⊗ · · · ⊗ ρk ⊗ 10)) in
these cases.

At times, it will be convenient not to have to worry about listing ρ1, . . . , ρk in
increasing order. So, if ρ1, . . . , ρk satisfy e(ρi) < 0, then there is some permutation
ρσ1 , . . . , ρσk which satisfies e(ρσ1) ≤ · · · ≤ e(ρσk) < 0. Then, by L(ρ1, . . . , ρk; τ0)
we mean L(ρσ1 , . . . , ρσk ; τ0).

Suppose that ρ1, . . . , ρk are representations of GL(n1, F ), . . . , GL(nk, F ) and τ
a representation of O(2m,F ). Let G = O(2n, F ), where n = n1 + · · ·+nk +m. Let

M =
{
diag(g1, ..., gk, h,

τg−1
k , ..., τg−1

1 ) | gi ∈ GL(ni, F ), h ∈ O(2m,F )
}
.

Then M is a standard Levi subgroup of G (cf. Appendix or [B-J1]). Set

ρ1 × · · · × ρk o τ = iM,G(ρ1 ⊗ · · · ⊗ ρk ⊗ τ).

In the case m = 0, we denote the trivial representation of O(0, F ) by 1.
Now, we give the Langlands classification for O(2n, F ) (cf. Appendix). Let

ρi, i = 1, . . . , k, be an irreducible essentially square-integrable representation of
GL(ni, F ) and τ an irreducible tempered representation of O(2m,F ). Suppose
that e(ρ1) ≤ · · · ≤ e(ρk) < 0. Then the representation ρ1 × · · · × ρk o τ has a
unique irreducible subrepresentation which we denote by L(ρ1, . . . , ρk; τ).

Let ρ be an irreducible unitary supercuspidal representation of GL(n, F ) and
k ∈ Z, k > 0. Then the representation

ν
−k+1

2 ρ× ν −k+1
2 +1ρ× · · · × ν k−1

2 ρ

has a unique irreducible subrepresentation which we denote by ζ(ρ, k) and a unique
irreducible quotient which we denote by δ(ρ, k) (cf. [Zel]).

Suppose that σ is an irreducible supercuspidal representation of SO(2m,F ) (re-
spectively, O(2m,F )) satisfying

(C0) ρo σ is reducible and ναρo σ is irreducible for all α ∈ R with α 6= 0.
Then ρoσ is the direct sum of two irreducible tempered representations. We write

ρo σ = T1(ρ;σ)⊕ T2(ρ;σ).

Let i = 1, 2 and ` > 1. By Jacquet module considerations, the representation

ν−`+1ρ× ν−`+2ρ× · · · ν−1ρo Ti(ρ;σ)

has a unique irreducible subrepresentation which we denote by ζi(ρ, `;σ) and a
unique irreducible quotient which we denote by δ([νρ, ν`−1ρ];Ti(ρ;σ)) (it is square-
integrable for ` > 0). For convenience, we also use the segment notation of Zelevin-
sky: let

[νβρ, νβ+mρ] = νβρ, νβ+1ρ, . . . , νβ+mρ.

Then, e.g., we have ζi(ρ, `;σ) = L([ν−`+1ρ, ν−1ρ];Ti(ρ;σ)).
Let ρ be an irreducible supercuspidal representation of GL(m,F ), m odd. Sup-

pose that ρ ∼= ρ̃. Then ρ o 10 is an irreducible tempered representation of
SO(2m,F ). By Jacquet module considerations, the representation

ν−`+1ρ× ν−`+2ρ× · · · ν−1ρ× ρo 10
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has a unique irreducible subrepresentation which we denote by ζ(ρ, `; 10) and a
unique irreducible quotient which we denote by δ([νρ, ν`−1ρ]; ρo 10) (it is square-
integrable for ` > 0). Similarly, if σ0 is an irreducible admissible representation of
SO(2n, F ) such that sσ0 � σ0, then ρoσ0 is an irreducible tempered representation
of SO(2(m+ n), F ). By Jacquet module considerations, the representation

ν−`+1ρ× ν−`+2ρ× · · · ν−1ρ× ρo σ0

has a unique irreducible subrepresentation which we denote by ζ(ρ, `;σ0) and a
unique irreducible quotient which we denote by δ([νρ, ν`−1ρ]; ρo σ0) (it is square-
integrable for ` > 0).

We introduce an additional piece of notation for Jacquet modules. Let G =
SO(2n, F ) (respectively, G = O(2n, F )) and π a representation of G. We write

s(m)π = rM,G(π),

where M is the standard Levi subgroup of G isomorphic to GL(m,F )× SO(2(n−
m), F ) (respectively, GL(m,F )×O(2(n−m), F )).

3. Degenerate principal series for O(2n, F )

In this section, we determine the reducibility for (generalized) degenerate prin-
cipal series for O(2n, F ). Suppose (ρ, σ) satisfy (C0) (for O(2(m + r), F )). We
analyze the reducibility of ζ(ρ0, k) o ζ1(ρ, `;σ) below. If ρ0

∼= ρ, the results are
given in Proposition 3.2 (for k = 1), Proposition 3.3 (for ` = 0), and Theorem
3.4 (for k ≥ 2, ` ≥ 1). If ρ0 6∼= ρ, the results are given in Theorem 3.5. We note
that the results consist of determining the reducibility points, the Langlands data
of the irreducible subquotients which appear, the composition series structure, and
certain information on Jacquet modules. As the arguments required are essentially
the same as in [Jan3], we omit the (rather lengthy) details.

The results also apply to SO(2n+ 1, F ), Sp(2n, F ), and SO(2n, F ) when (ρ, σ)
satisfies (C0) (where σ is an irreducible supercuspidal representation of the cor-
responding group). For SO(2n + 1, F ), Sp(2n, F ), the proofs are the same as for
O(2n, F ); for SO(2n, F ), the proofs are given in section 5. To allow this sort of
generality in the results, we use G(n, F ) to denote any of these groups.

We start with a preliminary result. While there are strong reasons to believe
that ζi(ρ, `;σ) is unitary, to the best of our knowledge this remains unknown. The
following lemma serves as a substitute for the unitarity of ζi(ρ, `;σ). (A similar
result should have been included in [Jan3].)

Lemma 3.1. Suppose ρ, ρ0 are irreducible unitary supercuspidal representations of
GL(m,F ), GL(m0, F ) and σ an irreducible supercuspidal representation of G(r, F ).
Further, assume that (ρ, σ) satisfies (C0). Then, if π = ζ(ρ0, k) o ζi(ρ, `;σ) is re-
ducible, it decomposes as the direct sum of two irreducible, inequivalent representa-
tions.

Proof. Let ˆ denote the duality of [Aub] (also, cf. [S-S]); for O(2n, F ) see [Jan6]).
Then, π̂ = δ(ρ0, k) o δi(ρ, `;σ). By [Gol1], [Gol2], e.g., we know that if this re-
duces, it is the direct sum of two inequivalent, irreducible subrepresentations. By
Théorème 1.7 and Corollaire 3.9 [Aub], π must have two inequivalent, irreducible
subquotients. It remains to show that π decomposes as a direct sum.

Suppose π is reducible. Let π1 and π2 denote the irreducible subquotients. We
claim that to show that π = π1 ⊕ π2, it is enough to show that s(km0)(πi) contains
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ζ(ρ0, k)⊗ζi(ρ, `;σ). One can see from [Tad3] (also, cf. pp. 74 and 75, [Jan2]) that the
two copies of ζ(ρ0, k)⊗ζi(ρ, `;σ) in s(km0)(π) are the only irreducible subquotients of
s(km0)(π) having unitary central character (all the rest have central character with
the exponent having negative real part). Thus, if s(km0)(πi) has ζ(ρ0, k)⊗ζi(ρ, `;σ)
as an irreducible subquotient, it follows from central character considerations and
Frobenius reciprocity that πi is a subrepresentation of ζ(ρ0, k) o ζi(ρ, `;σ). The
claim follows. Finally, to see that s(km0)(πi) contains ζ(ρ0, k)⊗ ζi(ρ, `;σ), we again
look to the dual side, where we have π̂ = π̂1 ⊕ π̂2. By Frobenius reciprocity,
s(km0)(π̂i) contains δ(ρ0, k)⊗ δi(ρ, `;σ). By Théorème 1.7, [Aub], we can conclude
s(km0)(πi) contains ζ(ρ0, k)⊗ ζi(ρ, `;σ), as needed. �

Proposition 3.2. Let ρ be an irreducible unitary supercuspidal representation of
GL(m,F ) and σ an irreducible supercuspidal representation of G(r, F ) with (ρ, σ)
satisfying (C0). Let π = ναρ o ζ1(ρ, `;σ) with α ∈ R, ` ≥ 1. Then, π is reducible
if and only if α ∈ {±1,±`}. Suppose π is reducible. By contragredience, we may
assume that α ≤ 0.

(1) α = −1, ` = 1
π = π1 + π2 + π3 with

π1 = L(ν−1ρ;T1(ρ;σ)), π2 = δ(νρ;T1(ρ;σ)), π3 = L(ν−
1
2 δ(ρ, 2);σ).

In this case, π1 is the unique irreducible subrepresentation, π2 is the unique
irreducible quotient, and π3 is a subquotient. We have

s(m)π1 = ν−1ρ⊗ T1(ρ;σ),

s(m)π2 = νρ⊗ T1(ρ;σ),

s(m)π3 = ρ⊗ L(ν−1ρ;σ).

(2) α = −1, ` > 1
π = π1 + π2 with

π1 = L([ν−`+1ρ, ν−1ρ], ν−1ρ;T1(ρ;σ)), π2 = L([ν−`+1ρ, ν−1ρ]; δ(νρ;T1(ρ;σ))).

In this case, π1 is the unique irreducible subrepresentation and π2 is the
unique irreducible quotient. We have
(a) ` = 2

s(m)π1 = 2ν−1ρ⊗ L(ν−1ρ;T1(ρ;σ)) + ν−1ρ⊗ L(ν−
1
2 δ(ρ, 2);σ),

s(m)π2 = ν−1ρ⊗ δ(νρ;T1(ρ;σ)) + νρ⊗ L(ν−1ρ;T1(ρ;σ)).

(b) ` > 2.

s(m)π1 = ν−`+1ρ⊗ L([ν−`+2ρ, ν−1ρ], ν−1ρ;T1(ρ;σ))

+ ν−1ρ⊗ L([ν−`+1ρ, ν−1ρ];T1(ρ;σ)),

s(m)π2 = ν−`+1ρ⊗ L([ν−`+2ρ, ν−1ρ]; δ(νρ;T1(ρ;σ)))

+ νρ⊗ L([ν−`+1ρ, ν−1ρ];T1(ρ;σ)).

(3) α = −`, ` > 1.
π = π1 + π2 with

π1 = L([ν−`ρ, ν−1ρ];T1(ρ;σ)), π2 = L(ν−`+
1
2 δ(ρ, 2), [ν−`+2ρ, ν−1ρ];T1(ρ;σ)).
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In this case, π1 is the unique irreducible subrepresentation and π2 is the
unique irreducible quotient. We have

s(m)π1 = ν−`ρ⊗ L([ν−`+1ρ, ν−1ρ];T1(ρ;σ))

s(m)π2 = ν−`+1ρ⊗ L(ν−`ρ, [ν−`+2ρ, ν−1ρ];T1(ρ;σ))

+ ν`ρ⊗ L([ν−`+1ρ, ν−1ρ];T1(ρ;σ)).

Proof. For O(2n, F ) (and SO(2n+1, F ), Sp(2n, F )), this is proved as in Proposition
3.1, [Jan3] (also, cf. [Tad4]). �

Proposition 3.3. Let ρ be an irreducible unitary supercuspidal representation of
GL(m,F ) and σ an irreducible supercuspidal representation of G(r, F ) with (ρ, σ)
satisfying (C0). Let π = ναζ(ρ, k)oσ with α ∈ R, k ≥ 2. Then π is reducible if and
only if α ∈ {−k+1

2 , −k+3
2 , . . . , k−1

2 }. Suppose π is reducible. By contragredience, we
may assume that α ≤ 0. Write α = −k+1

2 + j with 0 ≤ j ≤ k−1
2 .

(1) j = k−1
2

π = π1 + π2 with

πi = L([ν
−k+1

2 ρ, ν−1ρ], [ν
−k+1

2 ρ, ν−1ρ];Ti(ρ;σ))

for i = 1, 2. In this case, π = π1 ⊕ π2. We have

s(m)πi = 2ν
−k+1

2 ρ⊗ L([ν
−k+1

2 ρ, ν−1ρ], [ν
−k+3

2 ρ, ν−1ρ];Ti(ρ;σ))
+ν

−k+1
2 ρ⊗ L(ν−

k
2 +1δ(ρ, 2), ν−

k
2 +2δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ)

for i = 1, 2.
(2) 0 ≤ j < k−1

2
π = π1 + π2 + π3 with

πi = L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ];Ti(ρ;σ))

for i = 1, 2 and

π3 = L([ν−k+j+1ρ, ν−j−2ρ], ν−j−
1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ).

In this case, π3 is the unique irreducible quotient and π1 ⊕ π2 is a subrep-
resentation.
(a) j = 0 = k−2

2 (k = 2),

s(m)πi = ν−1ρ⊗ Ti(ρ;σ)

for i = 1, 2.

s(m)π3 = ρ⊗ L(ν−1ρ;σ).

(b) j = 0, k > 2,

s(m)πi = ν−k+1ρ⊗ L([ν−k+2ρ, ν−1ρ];Ti(ρ;σ))

for i = 1, 2.

s(m)π3 = ν−k+1ρ⊗ L([ν−k+2ρ, ν−2ρ], ν−
1
2 δ(ρ, 2);σ)

+ρ⊗ L([ν−k+1ρ, ν−1ρ];σ).
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(c) j = k−2
2 , k ≥ 4 (k even),

s(m)πi = ν−
k
2 ρ⊗ L([ν−

k
2 +1ρ, ν−1ρ], [ν−

k
2 +1ρ, ν−1ρ];Ti(ρ;σ))

+ν−
k
2 +1ρ⊗ L([ν−

k
2 ρ, ν−1ρ], [ν−

k
2 +2ρ, ν−1ρ];Ti(ρ;σ))

for i = 1, 2.

s(m)π3 = ν−
k
2 +1ρ⊗ L(ν−

k
2 ρ, ν

−k+3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ).

(d) 0 < j < k−2
2 ,

s(m)πi = ν−k+j+1ρ⊗ L([ν−k+j+2ρ, ν−1ρ], [ν−jρ, ν−1ρ];Ti(ρ;σ))
+ν−jρ⊗ L([ν−k+j+1ρ, ν−1ρ], [ν−j+1ρ, ν−1ρ];Ti(ρ;σ))

for i = 1, 2.

s(m)π3 = ν−k+j+1ρ⊗ L([ν−k+j+2ρ, ν−j−2ρ], ν−j−
1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ)

+ν−jρ⊗ L([ν−k+j+1ρ, ν−j−1ρ], ν−j+
1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ).

Proof. For O(2n, F ), this is essentially the same as Proposition 3.11, [Jan3]. (For
SO(2n+ 1, F ), Sp(2n, F ), this is Proposition 3.11, [Jan3].) �

Theorem 3.4. Let ρ be an irreducible unitary supercuspidal representation of
GL(m,F ) and σ an irreducible supercuspidal representation of G(r, F ) with (ρ, σ)
satisfying (C0). Let π = ναζ(ρ, k) o ζ1(ρ, `;σ). Suppose k ≥ 2 and ` ≥ 1 (the
cases k = 1 and ` = 0 are covered by Propositions 3.2 and 3.3 above). Then, π is
reducible if and only if

α ∈ {±(`+ k−1
2 ),±(`+ k−1

2 − 1), . . . ,±(`+ −k+1
2 )}

∪{{−k−1
2 , −k−1

2 + 1, . . . , k+1
2 } \ {0 if k = 2`− 1}}.

(We note that these sets need not be disjoint.) Let S1 denote the first set and S2 the
second. Suppose π is reducible. By contragredience, we may restrict our attention
to the case α ≤ 0.

(1) α 6∈ S2.
In this case, we have π = π1 + π2, where

π1 = L([να−
k−1

2 ρ, να+ k−1
2 ρ], [ν−`+1ρ, ν−1ρ];T1(ρ;σ)),

π2 = L([να−
k−1

2 ρ, ν−`−1ρ],

ν−`+
1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , να+ k

2 δ(ρ, 2), [να+ k−1
2 +2ρ, ν−1ρ];T1(ρ;σ)).

π1 is the unique irreducible subrepresentation and π2 is the unique irre-
ducible quotient.

(2) α = −k−1
2 .

One component of π is the following:

π1 = L([ν−kρ, ν−1ρ], [ν−`+1ρ, ν−1ρ];T1(ρ;σ)).

The other components are described below.
(a) ` = 1 (so k > `− 1).

In this case, there are two additional components:

π2 = L([ν−kρ, ν−2ρ]; δ(νρ;T1(ρ;σ))),

and
π3 = L([ν−kρ, ν−2ρ], ν−

1
2 δ(ρ, 2);σ).
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π1 is the unique irreducible subrepresentation, π2 is the unique irre-
ducible quotient, and π3 is a subquotient.

(b) k > `− 1 > 0.
In this case, there are three additional components:

π2 = L([ν−kρ, ν−2ρ], [ν−`+1ρ, ν−1ρ]; δ(νρ;T1(ρ;σ))),

π3 = L([ν−kρ, ν−`−1ρ], ν−`+
1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

3
2 δ(ρ, 2); δ(νρ;T1(ρ;σ))),

π4 = L([ν−kρ, ν−`−1ρ], ν−`+
1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ).

π1 is the unique irreducible subrepresentation, π3 is the unique irre-
ducible quotient, and π2 ⊕ π4 is a subquotient.

(c) `− 1 = k.
In this case, there is one additional component:

π2 = L([ν−kρ, ν−2ρ], [ν−kρ, ν−1ρ]; δ(νρ;T1(ρ;σ))).

π1 is the unique irreducible subrepresentation and π2 is the unique
irreducible quotient.

(d) `− 1 > k.
In this case, there is one additional component:

π2 = L([ν−`+1ρ, ν−2ρ], [ν−kρ, ν−1ρ]; δ(νρ;T1(ρ;σ))).

π1 is the unique irreducible subrepresentation and π2 is the unique
irreducible quotient.

(3) α ∈ S2.
Write α = −k+1

2 + j, with 0 ≤ j ≤ k−1
2 . One component of π is π1,

where π1 is defined as follows:

π1 = L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ], [ν−`+1ρ, ν−1ρ]; ρo T1(ρ;σ)).

The remaining components are described below, on a case by case basis.
(a) k − j − 1 > j > `− 1.

We have two additional components:

π2 = L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−`−1ρ],
ν−`+

1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);T2(ρ;σ)),

π3 = L([ν−k+j+1ρ, ν−j−2ρ], [ν−`+1ρ, ν−1ρ],
ν−j−

1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);T2(ρ;σ)).

π3 is the unique irreducible quotient and π1⊕π2 is a subrepresentation.
(b) k − j − 1 = j > `− 1.

We have one additional component:

π2 = L([ν
−k+1

2 ρ, ν−1ρ], [ν
−k+1

2 ρ, ν−`−1ρ],
ν−`+

1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);T2(ρ;σ)).

In this case, π = π1 ⊕ π2.
(c) k − j − 1 > j = `− 1.

We have one additional component:

π2 = L([ν−k+j+1ρ, ν−`−1ρ], [ν−`+1ρ, ν−1ρ],
ν−`+

1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);T2(ρ;σ)).

π1 is the unique irreducible subrepresentation and π2 is the unique
irreducible quotient.
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(d) k − j − 1 > `− 1 > j.
We have three additional components:

π2 = L([ν−k+j+1ρ, ν−2ρ], [ν−`+1ρ, ν−j−2ρ],
ν−j−

1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); δ(νρ;T1(ρ;σ))),

π3 = L([ν−k+j+1ρ, ν−`−1ρ], ν−`+
1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−j−

5
2 δ(ρ, 2),

ν−j−1δ(ρ, 3), ν−jδ(ρ, 3), . . . , ν−1δ(ρ, 3); δ(νρ;T1(ρ;σ))).

π4 = L([ν−k+j+1ρ, ν−`−1ρ], [ν−jρ, ν−1ρ],
ν−`+

1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);T2(ρ;σ)).

π1 is the unique irreducible subrepresentation, π3 is the unique irre-
ducible quotient, and π2 ⊕ π4 is a subquotient.

(e) k − j − 1 = `− 1 > j.
We have one additional component:

π2 = L([ν−`+1ρ, ν−k+`−2ρ], [ν−`+1ρ, ν−2ρ],
ν−k+`− 1

2 δ(ρ, 2), ν−k+`+ 1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); δ(νρ;T1(ρ;σ))).

π1 is the unique irreducible subrepresentation and π2 is the unique
irreducible quotient.

(f) `− 1 > k − j − 1 > j.
(i) If j = 0, the representation π2 below is the only other component.

In this case, π1 is the unique irreducible subrepresentation and
π2 is the unique irreducible quotient.

(ii) If j > 0, there are two additional components:

π2 = L([ν−k+j+1ρ, ν−2ρ], [ν−`+1ρ, ν−j−2ρ],
ν−j−

1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); δ(νρ;T1(ρ;σ))),

π3 = L([ν−`+1ρ, ν−k+j−1ρ], [ν−jρ, ν−2ρ],
ν−k+j+ 1

2 δ(ρ, 2), ν−k+j+ 3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); δ(νρ;T1(ρ;σ))).

In this case, π2 is the unique irreducible quotient and π1 ⊕ π3 is
a subrepresentation.

(g) `− 1 > k − j − 1 = j.
We have one additional component:

π2 = L([ν−`+1ρ, ν
−k−3

2 ρ], [ν
−k+1

2 ρ, ν−2ρ],
ν−

k
2 δ(ρ, 2), ν−

k
2 +1δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); δ(νρ;T1(ρ;σ)))

In this case, π = π1 ⊕ π2.
We note that the case k − j − 1 = j = `− 1 is a point of irreducibility.

Proof. For O(2n, F ) (and SO(2n+1, F ), Sp(2n, F )), the proof that the reducibility
points are as stated is essentially the same argument used in Theorem 4.1, [Jan3].
We will not repeat the arguments here, just restrict ourselves to a comment on the
most difficult case: the irreducibility of ζ(ρ, 2`−1)oζ1(ρ, `;σ). The analogous case
in [Jan3] is covered by Lemma 4.3, [Jan3]. A more efficient argument is given in
section 6, [Jan5]. For ζ(ρ, 2`− 1)o ζ1(ρ, `;σ), the [Jan5] argument only works for
` > 2. Thus, the most efficient way to deal with this case seems to be to use [Gol1],
[Gol2] for ` = 1, a Jacquet module argument similar (but simpler) than that of
Lemma 4.3, [Jan3] for ` = 2, then the [Jan5] argument for ` > 2.

The proof that the π has the irreducible subquotients indicated is similar to the
proof of Theorem 6.1, [Jan3]. It is an inductive argument, with the induction on
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k + ` (the parabolic rank of the supercuspidal support). As it is a rather lengthy
argument, and there are no new ideas involved, we do not go through the details.
Instead, we just restrict ourselves to a few remarks.

As in [Jan3], the induction focuses on s(m)π. For cases (2) and (3) (noting that
case (2) is essentially j = −1), we observe that π = ν

−k+1
2 +jζ(ρ, k)o ζ1(ρ, `;σ) has

s(m)π = ν−k+j+1ρ⊗ ν −k2 +j+1ζ(ρ, k − 1)o ζ1(ρ, `;σ)

+ν−jρ⊗ ν −k2 +jζ(ρ, k − 1)o ζ1(ρ, `;σ)

+ν−`+1ρ⊗ ν −k+1
2 +jζ(ρ, k)o ζ1(ρ, `− 1;σ).

We let
τ ′ = ν−k+j+1ρ⊗ ν −k2 +j+1ζ(ρ, k − 1)o ζ1(ρ, `;σ),

τ ′′ = ν−jρ⊗ ν −k2 +jζ(ρ, k − 1)o ζ1(ρ, `;σ),

τ ′′′ = ν−`+1ρ⊗ ν −k+1
2 +jζ(ρ, k)o ζ1(ρ, `− 1;σ).

For τ ′, we have k′ = k−1, j′ = j, `′ = ` (in the obvious notation) so that k′−j′−1 =
k − j − 2, j′ = j, `′ − 1 = `− 1. Similarly, for τ ′′ we have k′′ − j′′ − 1 = k − j − 1,
j′′ = j−1, `′′−1 = `−1 and for τ ′′′, k′′′−j′′′−1 = k−j−1, j′′′ = j, `′′′−1 = `−2.
Further, by inductive hypothesis, we know that τ ′, τ ′′, τ ′′′ decompose according to
the theorem.

The proof of the theorem is broken into subcases based on how τ ′, τ ′′, τ ′′′

decompose (with respect to the theorem). The particular case of the theorem
governing the decomposition of τ ′ is given in the second column in the table below,
and is easily determined from k′ − j′ − 1, j′, `′ − 1. One note: if j = k+1

2 , in order
to avoid having α′ > 0, we replace τ ′ = ν

−k+1
2 ρ ⊗ ν 1

2 ζ(ρ, k − 1) o ζ(ρ, `;σ) with
ν
−k+1

2 ρ⊗ ν− 1
2 ζ(ρ, k− 1)o ζ(ρ, `;σ) = τ ′′ (so then k′− j′− 1 = k′′− j′′− 1, j′ = j′′,

`′− 1 = `′′− 1). The third and fourth columns have the corresponding information
for τ ′′ and τ ′′′, respectively. The final column indicates which components of τ ′,
τ ′′, τ ′′′ are contained in s(m)πi for each component πi of π. Note that this is part
of the induction; we assume the table gives the Jacquet modules for lower values of
k + ` and verifies it for the k + ` under consideration.

We note that the notation in the tables is the obvious notation; e.g., if τ ′ de-
composes according to case 3a, then τ ′2 is the second component in part 3a of the
statement of the theorem.

The proof that the composition series have the indicated structure is similar to
the proof of Theorem 7.1, [Jan3]. Again, since there are no new ideas involved, we
omit the details.

Table 1. Let π = ναζ(ρ, k)o ζ1(ρ, `;σ) be as in the statement of Theorem 3.4.
The components of π are denoted by π1, π2, . . . ; the corresponding Jacquet modules
are s(m)π1, s(m)π2, . . . . An explicit description of π1, π2, . . . is given in Theorem
3.4. The representations τ ′, τ ′′, τ ′′′ are the induced representations arising in
s(m)π (s(m)π = τ ′ + τ ′′ + τ ′′′), possibly reducible. They are described in the proof
of Theorem 3.4 and decompose as indicated in the table; the final column indicates
which components of τ ′, τ ′′, τ ′′′ are contained in s(m)πi for each component πi of
π.
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Case (for π) for τ ′ for τ ′′ for τ ′′′ components
1. (α) k = 2, α = −(`+ 1

2 ) 3.1 irr irr s(m)π1 = τ ′1
s(m)π2 = τ ′2 + τ ′′ + τ ′′′

(β) k = 2, α = −(`− 1
2 ) irr 3.1 1 s(m)π1 = τ ′ + τ ′′1 + τ ′′′1

s(m)π2 = τ ′′2 + τ ′′′2

(γ) k > 2, α = −(`+ k−1
2 ) 1 irr irr s(m)π1 = τ ′1

s(m)π2 = τ ′2 + τ ′′ + τ ′′′

(δ) k > 2, α = −(`+ −k+1
2 ) irr 1 1 s(m)π1 = τ ′ + τ ′′1 + τ ′′′1

s(m)π2 = τ ′′2 + τ ′′′2

(ε) k > 2, −(`+ k−1
2 ) < α, 1 1 1 s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

α < −(`+ −k+1
2 ) s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2

2a.
(α) ` = 1, k = 2 3.1 irr irr s(m)π1 = τ ′1

s(m)π2 = τ ′2 + τ ′′

s(m)π3 = τ ′3 + τ ′′′

(β) ` = 1, k > 2 2a irr irr s(m)π1 = τ ′1
s(m)π2 = τ ′2 + τ ′′

s(m)π3 = τ ′3 + τ ′′′

2b.
(α) ` = 2, k = 2 3.1 3.1 2a s(m)π1 = τ ′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′1
s(m)π3 = τ ′′2 + τ ′′′2

s(m)π4 = τ ′′′3

(β) ` = 2, k > 2 2b 1 2a s(m)π1 = τ ′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′1
s(m)π3 = τ ′3 + τ ′′2 + τ ′′′2

s(m)π4 = τ ′4 + τ ′′′3

(γ) ` > 2, k = ` 2c 1 2b s(m)π1 = τ ′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′1 + τ ′′′2

s(m)π3 = τ ′′2 + τ ′′′3

s(m)π4 = τ ′′′4

(δ) ` > 2, k > ` 2b 1 2b s(m)π1 = τ ′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′1 + τ ′′′2

s(m)π3 = τ ′3 + τ ′′2 + τ ′′′3

s(m)π4 = τ ′4 + τ ′′′4

2c.
(α) k = 2, ` = 3 3.1 irr 2b s(m)π1 = τ ′1 + τ ′′′1 + τ ′′′4

s(m)π2 = τ ′2 + τ ′′ + τ ′′′2 + τ ′′′3

(β) k > 2, ` = k + 1 2d irr 2b s(m)π1 = τ ′1 + τ ′′′1 + τ ′′′4

s(m)π2 = τ ′2 + τ ′′ + τ ′′′2 τ
′′′
3
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2d.
(α) k = 2, ` = 4 3.1 irr 2c s(m)π1 = τ ′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′ + τ ′′′2

(β) k = 2, ` > 4 3.1 irr 2d s(m)π1 = τ ′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′ + τ ′′′2

(γ) k > 2, ` = k + 2 2d irr 2c s(m)π1 = τ ′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′ + τ ′′′2

(δ) k > 2, ` > k + 2 2d irr 2d s(m)π1 = τ ′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′ + τ ′′′2

3a.
(α) ` = 1, j = 1, k = 4 3b 3c 3.2 s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′′2

s(m)π3 = τ ′′2 + τ ′′′3

(β) ` = 1, j = 1, k > 4 3a 3c 3.2 s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′′2

s(m)π3 = τ ′3 + τ ′′2 + τ ′′′3

(γ) ` = 1, j > 1, k = 2j + 2 3b 3a 3.2 s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(m)π3 = τ ′′3 + τ ′′′3

(δ) ` = 1, j > 1, k > 2j + 2 3a 3a 3.2 s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(m)π3 = τ ′3 + τ ′′3 + τ ′′′3

(ε) ` > 1, j = `, k = 2j + 2 3b 3c 3a s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′′2

s(m)π3 = τ ′′2 + τ ′′′3

(ζ) ` > 1, j = `, k > 2j + 2 3a 3c 3a s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′′2

s(m)π3 = τ ′3 + τ ′′2 + τ ′′′3

(η) ` > 1, j > `, k = 2j + 2 3b 3a 3a s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(m)π3 = τ ′′3 + τ ′′′3

(θ) ` > 1, j > `, k > 2j + 2 3a 3a 3a s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(m)π3 = τ ′3 + τ ′′3 + τ ′′′3

3b. (n.b. τ ′ = τ ′′)
(α) ` = 1, j = 1, k = 3 3c 3c 3.2 s(m)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′′2 + τ ′′′2

(β) ` = 1, j > 1, k = 2j + 1 3a 3a 3.2 s(m)π1 = τ ′1 + τ ′3 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2 + τ ′′3 + τ ′′′2

(γ) ` > 1, j = `, k = 2j + 1 3c 3c 3b s(m)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′′2 + τ ′′′2

(δ) ` > 1, j > `, k = 2j + 1 3a 3a 3b s(m)π1 = τ ′1 + τ ′3 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2 + τ ′′3 + τ ′′′2
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3c.
(α) j = 0, ` = 1, k = 2 irr 3.1 3.2 s(m)π1 = τ ′ + τ ′′1 + τ ′′′1

s(m)π2 = τ ′′2 + τ ′′3 + τ ′′′2 + τ ′′′3

(β) j = 0, ` = 1, k > 2 3c 2a 3.2 s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2 + τ ′′3

+ τ ′′′2 + τ ′′′3

(γ) j > 0, ` = j + 1, k = 2j + 2 irr 3d 3a s(m)π1 = τ ′ + τ ′′1 + τ ′′2 + τ ′′′1

s(m)π2 = τ ′′3 + τ ′′4 + τ ′′′2 + τ ′′′3

(δ) j > 0, ` = j + 1, k > 2j + 2 3c 3d 3a s(m)π1 = τ ′1 + τ ′′1 + τ ′′2 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′3 + τ ′′4

+ τ ′′′2 + τ ′′′3

3d.
(α) j = 0, ` = 2, k = 3 3e 2b 3c s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2
s(m)π3 = τ ′′3
s(m)π4 = τ ′′4 + τ ′′′2

(β) j = 0, ` = 2, k > 3 3d 2b 3c s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2
s(m)π3 = τ ′3 + τ ′′3
s(m)π4 = τ ′4 + τ ′′4 + τ ′′′2

(γ) j = 0, ` > 2, k = `+ 1 3e 2b 3d s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(m)π3 = τ ′′3 + τ ′′′3

s(m)π4 = τ ′′4 + τ ′′′4

(δ) j = 0, ` > 2, k > `+ 1 3d 2b 3d s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(m)π3 = τ ′3 + τ ′′3 + τ ′′′3

s(m)π4 = τ ′4 + τ ′′4 + τ ′′′4

(ε) j > 0, ` = j + 2, k = 2j + 3 3e 3d 3c s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2
s(m)π3 = τ ′′3
s(m)π4 = τ ′′4 + τ ′′′2

(ζ) j > 0, ` = j + 2, k > 2j + 3 3d 3d 3c s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2
s(m)π3 = τ ′3 + τ ′′3
s(m)π4 = τ ′4 + τ ′′4 + τ ′′′2

(η) j > 0, ` > j + 2, 3e 3d 3d s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

k = `+ j + 1 s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(m)π3 = τ ′′3 + τ ′′′3

s(m)π4 = τ ′′4 + τ ′′′4

(θ) j > 0, ` > j + 2, 3d 3d 3d s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

k > `+ j + 1 s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(m)π3 = τ ′3 + τ ′′3 + τ ′′′3

s(m)π4 = τ ′4 + τ ′′4 + τ ′′′4
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3e.
(α) j = 0, ` = 2, k = 2 irr 3.1 3c s(m)π1 = τ ′ + τ ′′1 + τ ′′′1 + τ ′′′2

s(m)π2 = τ ′′2
(β) j = 0, ` > 2, k = ` 3f(i) 2c 3d s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1 + τ ′′′4

s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2 + τ ′′′3
(γ) j > 0, ` = j + 2, 3g 3e 3c s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1 + τ ′′′2

k = `+ j s(m)π2 = τ ′2 + τ ′′2
(δ) j > 0, ` > j + 2, 3f(ii) 3e 3d s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1 + τ ′′′4

k = `+ j s(m)π2 = τ ′2 + τ ′3 + τ ′′2
+τ ′′′2 + τ ′′′3

3f(i).
(α) j = 0, k = 2, ` = 3 irr 3.1 3e s(m)π1 = τ ′ + τ ′′1 + τ ′′′1

s(m)π2 = τ ′′2 + τ ′′′2
(β) j = 0, k = 2, ` > 3 irr 3.1 3f(i) s(m)π1 = τ ′ + τ ′′1 + τ ′′′1

s(m)π2 = τ ′′2 + τ ′′′2
(γ) j = 0, k > 2, ` = k + 1 3f(i) 2d 3e s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2
(δ) j = 0, k > 2, ` > k + 1 3f(i) 2d 3f(i) s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2

3f(ii).
(α) j = 1, k = 4, ` = 4 3g 3f(i) 3e s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′′2 + τ ′′′2
s(m)π3 = τ ′2

(β) j = 1, k = 4, ` > 4 3g 3f(i) 3f(ii) s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1
s(m)π2 = τ ′′2 + τ ′′′2
s(m)π3 = τ ′2 + τ ′′′3

(γ) j = 1, k > 4, ` = k 3f(ii) 3f(i) 3e s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1
s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2
s(m)π3 = τ ′3

(δ) j = 1, k > 4, ` > k 3f(ii) 3f(i) 3f(ii) s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1
s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2
s(m)π3 = τ ′3 + τ ′′′3

(ε) j > 1, k = 2j + 2, 3g 3f(ii) 3e s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1
` = j + 3 s(m)π2 = τ ′′2 + τ ′′′2

s(m)π3 = τ ′2 + τ ′′3
(ζ) j > 1, k = 2j + 2, 3g 3f(ii) 3f(ii) s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

` > j + 3 s(m)π2 = τ ′′2 + τ ′′′2
s(m)π3 = τ ′2 + τ ′′3 + τ ′′′3

(η) j > 1, k > 2j + 2, 3f(ii) 3f(ii) 3e s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1
` = k − j + 1 s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(m)π3 = τ ′3 + τ ′′3
(θ) j > 1, k > 2j + 2, 3f(ii) 3f(ii) 3(ii) s(m)π1 = τ ′1 + τ ′′1 + τ ′′′1

` > k − j + 1 s(m)π2 = τ ′2 + τ ′′2 + τ ′′′2
s(m)π3 = τ ′3 + τ ′′3 + τ ′′′3
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3g. (n.b. τ ′ = τ ′′)
(α) j = 1, k = 3, ` = 3 3f(i) 3f(i) irr s(m)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′

s(m)π2 = τ ′′2
(β) j = 1, k = 3, ` > 3 3f(i) 3f(i) 3g s(m)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′1

s(m)π2 = τ ′′2 + τ ′′′2

(γ) j > 1, k = 2j + 1, 3f(ii) 3f(ii) irr s(m)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′

` = j + 2 s(m)π2 = τ ′3 + τ ′′2 + τ ′′3
(δ) j > 1, k = 2j + 1, 3f(ii) 3f(ii) 3g s(m)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′1

` > j + 2 s(m)π2 = τ ′3 + τ ′′2 + τ ′′3 + τ ′′′2

�

Before proceeding to the next result, we pause to make a couple of observations
about the preceding theorem.

For case 3, we write α = −k+1
2 + j, 0 ≤ j ≤ k−1

2 . As noted in the proof, we may
also write case 2 this way, using j = −1. Now, s(m)π is the sum of three terms (see
proof) which are tensor products whose first factors are ν−(k−j−1)ρ, ν−jρ, ν−(`−1)ρ,
resp. The relations among the exponents k−j−1, j, `−1 govern the decomposition
of 2 and 3 into cases. The reader may observe the similarity between neighboring
cases; e.g., one observes that taking ` − 1 = j in case 3(d), suitably interpreted,
gives the irreducible subquotients for 3(c). To make this comparison, Zelevinsky
segments (resp., sequences of generalized Steinbergs) of length −1 should be treated
as missing; segments (resp., sequences of generalized Steinbergs) of length < −1
should have the entire representation treated as missing.

We also make an observation regarding the generalized Steinbergs which appear
in the Langlands data. First, we note that any term appearing in the minimal
Jacquet module sminπ (i.e., the Jacquet module with respect to the smallest stan-
dard parabolic subgroup having nonzero Jacquet module) has the form

νx1ρ⊗ νx2ρ⊗ · · · ⊗ νxk+`ρ⊗ σ

with νx1ρ⊗ νx2ρ⊗ · · ·⊗ νxk+`ρ a shuffle (i.e., a permutation preserving the relative
orders; cf. section 4 [K-R]) of ν−k+j+1ρ⊗ ν−k+j+2ρ⊗ · · · ⊗ νxρ, ν−jρ⊗ ν−j+1ρ⊗
· · ·⊗ν−x−1ρ, and ν−`+1ρ⊗ν−`+2ρ⊗· · ·⊗ρ. Therefore, one can have at most three
consecutive xi, xi+1, xi+2 which are decreasing. This is why we do not get δ(ρ, n)
for n > 3. Similar but subtler considerations may be used to constrain the possible
tempered representations of orthogonal groups which appear.

We now turn to what might be considered a generalized version of ramified de-
generate principal series. Here, we need a bit of additional notation. Suppose ρ 6∼= ρ0

are representations of GL(m,F ) and GL(m0, F ), with both (ρ, σ) and (ρ0, σ) satis-
fying (C0). Again, let ρoσ = T1(ρ;σ)+T2(ρ;σ) and ρ0oσ = T1(ρ0;σ)+T2(ρ0;σ).
By [Gol1], [Gol2], ρoTi(ρ0;σ) and ρ0oTj(ρ;σ) have a common component. Denote
this common component by Ti,j(ρ0, ρ;σ).

Theorem 3.5. Suppose that ρ, ρ0 are irreducible unitary supercuspidal representa-
tions of GL(m,F ), GL(m0, F ) and σ an irreducible supercuspidal representation of
G(r, F ) such that both (ρ, σ) and (ρ0, σ) satisfy (C0). Let π = ναζ(ρ0, k)oζ1(ρ, `;σ)
with α ∈ R, k ≥ 1. Then π is reducible if and only if α ∈ {−k+1

2 , −k+3
2 , . . . , k−1

2 }.
Suppose π is reducible. By contragredience, we may assume that α ≤ 0. Write
α = −k+1

2 + j with 0 ≤ j ≤ k−1
2 .
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(1) j = k−1
2

π = π1 + π2 with

πi = L([ν−`+1ρ, ν−1ρ], [ν
−k+1

2 ρ0, ν
−1ρ0], [ν

−k+1
2 ρ0, ν

−1ρ0];Ti,1(ρ0, ρ;σ))

for i = 1, 2. In this case, π = π1 ⊕ π2.
(2) 0 ≤ j < k−1

2
π = π1 + π2 + π3 with

πi = L([ν−`+1ρ, ν−1ρ], [ν−k+j+1ρ0, ν
−1ρ0], [ν−jρ0, ν

−1ρ0];Ti,1(ρ0, ρ;σ))

for i = 1, 2 and

π3 = L([ν−`+1ρ, ν−1ρ], [ν−k+j+1ρ0, ν
−j−2ρ0],ν−j−

1
2 δ(ρ0, 2), ν−j+

1
2 δ(ρ0, 2),

. . . , ν−
1
2 δ(ρ0, 2);T1(ρ;σ)).

In this case, π3 is the unique irreducible quotient and π1 ⊕ π2 is a subrep-
resentation.

Proof. For O(2n, F ) (and SO(2n + 1, F ), Sp(2n, F )), the arguments from section
5, [Jan3] may be used to identify the irreducible subquotients and their Jacquet
modules. Alternatively, and more directly, they may be obtained from the results
of [Jan6]. The arguments from section 7, [Jan3] may be used to determine the
composition series. �

Remark 3.6. Let ρ and σ be as in the preceding theorem. Suppose ρ0 is an irre-
ducible unitary supercuspidal representation of GL(m0, F ) with ρ0 6∼= ρ̃0. Then,
ναζ(ρ0, k)o ζ1(ρ, `;σ) is irreducible for all α ∈ R. (This also follows from [Jan6] or
an argument like that in [Jan3].)

4. Restrictions of representations

Our analysis of generalized degenerate principal series for SO(2n, F ) is based
on our results for O(2n, F ) and the connection between induced representations
for SO(2n, F ) and those for O(2n, F ). To establish the connection between gen-
eralized degenerate principal series for G0 = SO(2n, F ) and G = O(2n, F ), we
study the restriction from G to G0 in general (Lemmas 4.1 and 4.2), for Langlands
data (Lemma 4.6) and for representations Ti(ρ;σ) and ζi(ρ, `;σ). Proposition 4.3
and Corollary 4.4 discuss cuspidal reducibility. In Lemma 4.5, we describe the
connection between composition series for representations of G and G0.

Recall that for n ≥ 1,

O(2n, F ) = SO(2n, F )o {1, s},

where s is defined in section 2. We denote by ŝ the nontrivial character of O(2n, F )
defined by

ŝ(g) = 1,

ŝ(gs) = −1,

for every g ∈ SO(2n, F ).

Lemma 4.1. Let G = O(2n, F ), G0 = SO(2n, F ), with n > 0.
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(1) For any admissible representation π0 of G0 and any admissible representa-
tion π of G (π0, π not necessarily irreducible), we have

rG0,G ◦ iG,G0(π0) ∼= π0 ⊕ sπ0, iG,G0(sπ0) ∼= iG,G0(π0),

iG,G0 ◦ rG0,G(π) ∼= π ⊕ ŝπ, rG0,G(ŝπ) ∼= rG0,G(π).

(2) Let σ be an irreducible admissible representation of G. Suppose that σ0 is
an irreducible subquotient of rG0,G(σ). Then,

σ0
∼= sσ0 if and only if σ � ŝσ.

(a) If σ0
∼= sσ0, then

iG,G0(σ0) ∼= σ ⊕ ŝσ,
rG0,G(σ) ∼= σ0.

(b) If σ0 � sσ0, then

iG,G0(σ0) ∼= σ,

rG0,G(σ) ∼= σ0 ⊕ sσ0.

Proof. 1. The first statement follows from [B-Z], Theorem 5.2, noting that since
both G0 and sG0 are open in G, either can start the filtration, hence both π0 and
sπ0 appear as subrepresentations.

An isomorphism iG,G0 ◦ rG0,G(π) ∼= π ⊕ ŝπ can be constructed in the following
way: Let V denote the space of π. For v ∈ V , define ϕv : G→ V and ψv : G→ V
by

ϕv(x) = π(x)v, ψv(x) = ŝπ(x)v.

Then ϕ : V → iG,G0(V ) given by ϕ(v) = ϕv and ψ : V → iG,G0(V ) defined by
ψ(v) = ψv are intertwining operators and ϕ⊕ψ is an isomorphism between π⊕ ŝπ
and iG,G0 ◦ rG0,G(π).

The proof that iG,G0(sπ0) ∼= iG,G0(π0) is direct, using the intertwining operator
ϕ between iG,G0(π0) and iG,G0(sπ0) given by

ϕ(f)(g) = f(sg),

where f ∈ iG,G0(π0), g ∈ G.
The last statement follows from [B-Z], Proposition 1.9.
2. This follows from the results in section 2, [G-K] (cf. Lemma 2.1, [B-J1]). �

Lemma 4.2. Let σ be an admissible representation of O(2m,F ), m > 0, and σ0

an admissible representation of SO(2m,F ). Let ρ be an admissible representation
of GL(n, F ). Set G = O(2(m+ n), F ), G0 = SO(2(m+ n), F ).

(1)
ŝ(ρo σ) ∼= ρo ŝσ, s(ρo σ0) ∼= ρo sσ0.

(2) Suppose that σ is irreducible and σ0 is an irreducible subquotient of
rSO(2m,F ),O(2m,F )(σ).
(a) If σ0

∼= sσ0, then

iG,G0(ρo σ0) = ρo σ + ŝ(ρo σ),

rG0,G(ρo σ) = ρo σ0.
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(b) If σ0 � sσ0, then

iG,G0(ρo σ0) = ρo σ,
rG0,G(ρo σ) = ρo σ0 + ρo sσ0.

Proof. 1. The first statement follows from [B-Z], Proposition 1.9, the second from
[Ban2], Corollary 4.1.

2. Let M0 (respectively, M) be the standard Levi subgroup of G0 (respectively,
G) isomorphic to GL(n, F )× SO(2m,F ) (respectively, GL(n, F )×O(2m,F )).

(a) Suppose σ0
∼= sσ0. Then ρ o σ0

∼= s(ρ o σ0). According to Lemma 4.1,
iO(2m,F ),SO(2m,F )(σ0) = σ + ŝσ. We have

ρo σ + ŝ(ρo σ) = iG,M (ρ⊗ σ) + iG,M (ρ⊗ ŝσ)

= iG,M (ρ⊗ (σ + ŝσ)) = iG,M0(ρ⊗ σ0) = iG,G0(ρo σ0).

By Lemma 4.2,

rG0,G ◦ iG,G0(ρo σ0) = ρo σ0 + s(ρo σ0) = 2ρo σ0.

On the other hand,

rG0,G ◦ iG,G0(ρo σ0) = rG0,G(ρo σ) + rG0,G(ŝ(ρo σ)) = 2rG0,G(ρo σ).

It follows that rG0,G(ρo σ) = ρo σ0.
(b) Suppose that σ0 � sσ0. According to Lemma 4.1, iO(2m,F ),SO(2m,F )(σ0) = σ.

It follows that

ρo σ = iG,M (ρ⊗ σ) = iG,M0(ρ⊗ σ0) = iG,G0(ρo σ0).

Further,
rG0,G ◦ iG,G0(ρo σ0) = ρo σ0 + ρo sσ0

and
rG0,G ◦ iG,G0(ρo σ0) = rG0,G(ρo σ).

It follows that rG0,G(ρo σ) = ρo σ0 + ρo sσ0. �

The following proposition relates the reducibility of νxρoσ and that of νxρoσ0

(for x ∈ R). This proposition tells us the conditions under which (ρ, σ) satisfy
(C0) implies (ρ, σ0) satisfy (C0) (noting the relevence of the latter to generalized
degenerate principal series for SO(2n, F ) discussed in section 3). In addition, as a
corollary, we deduce that cuspidal reducibility for O(2n, F ) has a characterization
like that for SO(2n+ 1, F ), Sp(2n, F ), and SO(2n, F ).

Proposition 4.3. Suppose ρ is an irreducible unitary supercuspidal representation
of GL(m,F ) and σ an irreducible supercuspidal representation of O(2r, F ). Suppose
σ0 is an irreducible subquotient of rSO(2r,F ),O(2r,F )(σ).

(1) r > 0 and s · σ0
∼= σ0.

For all x ∈ R, we have νxρ o σ is reducible if and only if νxρ o σ0 is
reducible.

(2) r = 0 or σ0 6∼= s · σ0.
Here, there are two possibilities:

(a) m odd with ρ ∼= ρ̃.
In this case, νxρ o σ0 is irreducible for all x ∈ R. However, νxρ o σ
is irreducible for all x ∈ R \ {0} and reducible for x = 0.
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(b) m even or ρ 6∼= ρ̃.
For all x ∈ R, we have νxρo σ is reducible if and only if νxρo σ0 is
reducible.

Proof. Let M be the standard Levi subgroup of G isomorphic to GL(m,F ) ×
O(2r, F ). For (1), we show that νxρ o σ is irreducible if and only if νxρ o σ0

is irreducible. For (2), we show two things: (i) νxρoσ irreducible implies νxρoσ0

irreducible, and (ii) νxρ o σ0 irreducible implies νxρ o σ irreducible unless m is
odd, x = 0, and ρ ∼= ρ̃, in which case νxρo σ reduces.

We start with (1), so we may assume r > 0 and σ0
∼= sσ0. By Lemma 4.2,

rG0,G(νxρo σ) = νxρo σ0.

Therefore, if νxρoσ0 is irreducible, then νxρoσ is irreducible. On the other hand,
suppose that νxρo σ is irreducible. We have

rM,G(νxρo σ) = νxρ⊗ σ + ν−xρ̃⊗ σ.
Since σ 6∼= ŝσ, Lemma 4.2(1) implies

rM,G(ŝ(νxρo σ)) = νxρ⊗ ŝσ + ν−xρ̃⊗ ŝσ.
It follows that νxρo σ � ŝ(νxρo σ). By Lemma 4.1, νxρo σ0 = rG0,G(νxρo σ) is
irreducible.

We now address (2) for r > 0, so we may assume r > 0 and σ0 � sσ0. By Lemma
4.2,

iG,G0(νxρo σ0) = νxρo σ.
Therefore, if νxρoσ is irreducible, then νxρoσ0 is irreducible. On the other hand,
suppose that νxρo σ0 is irreducible. We have

rM0,G0(νxρo σ0) = νxρ⊗ σ0 + ν−xρ̃⊗ smσ0.

By Lemma 4.2(1),

rM0,G0(s(νxρo σ0)) = νxρ⊗ sσ0 + ν−xρ̃⊗ sm+1σ0.

Thus, νxρ o σ0 6∼= s(νxρ o σ0) unless m is odd, x = 0, and ρ ∼= ρ̃. By Lemma
4.1, νxρ o σ = iG,G0(νxρ o σ0) is irreducible. If m is odd, x = 0, and ρ ∼= ρ̃, then
Theorem 6.11 of [Gol1] tells us that ρoσ0 is irreducible and Theorem 3.3 of [Gol2]
implies that ρo σ has two components.

Finally, we address (2) for r = 0. Then σ0 = 10, σ = 1, both trivial representa-
tions of the trivial group.

First, since M = M0, we have

iG,M (νxρ⊗ 1) ∼= iG,G0 ◦ iG0,M0(νxρ⊗ 10).

Therefore, if iG,M (νxρ⊗ 1) is irreducible, then so is iG0,M0(νxρ⊗ 10).
On the other hand, suppose iG0,M0(νxρ ⊗ 10) is irreducible. Suppose x 6= 0;

without loss of generality, x < 0. Then, iG0,M0(νxρ⊗ 10) = L(νxρ⊗ 10). Since

s · L(νxρ) = L(s · (νxρ⊗ 10)) 6∼= L(νxρ⊗ 10),

we see that iG,G0 ◦ iG0,M0(νxρ⊗ 10) is irreducible, as needed. When x = 0, Theo-
rems 3.1 and 3.3 of [Gol2] tell us that iG0,M0(ρ⊗10) and iG,M (ρ⊗1) have the same
number of components (implying the irreducibility of iG,M (ρ ⊗ 1)) unless ρ is a
self-contragredient representation of GLm(F ) with m odd, in which iG,M (ρ ⊗ 1)
has twice as many components as iG0,M0(ρ ⊗ 10) (implying the reducibility of
iG,M(ρ⊗ 1)), as needed. �
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It is worth noting that the results may be interpreted as follows: If νxρ o σ is
irreducible, then νxρoσ0 is irreducible. On the other hand, if νxρoσ0 is irreducible,
then νxρoσ is irreducible unless νxρ⊗σ is unitary (so x = 0) and the pair (P, ρ⊗σ)
is ramified (in the sense of Harish-Chandra, cf. [Sil2]) but (P 0, ρ⊗σ0) is unramified.

Corollary 4.4. Assume the conjectures needed for [Mœ] or [Zh]. With notation
as above, we have the following:

(1) If ρ 6∼= ρ̃, then νxρo σ is irreducible for all x ∈ R.
(2) If ρ ∼= ρ̃, then there is a unique α ≥ 0 with α ∈ 1

2Z such that νxρ o σ is
reducible and νxρoσ is irreducible for all x ∈ R\{±α}. (The specific value
of α may be determined by the preceding theorem and the results of [Mœ],
[Zh].)

In section 3, we claimed that when (ρ, σ) and (ρ, σ0) both satisfy (C0), the com-
position series for the generalized degenerate principal series ναζ(ρ, k)o ζ1(ρ, `;σ)
and those of ναζ(ρ, k) o ζ1(ρ, `;σ0) have the same form. Lemmas 4.5 and 4.6 are
used (in section 5) to show that this is indeed the case.

Lemma 4.5. Let σ be an irreducible admissible representation of O(2m,F ), m > 0,
and σ0 an irreducible subquotient of rSO(2m,F ),O(2m,F )(σ). Let ρ be an admissible
representation of GL(n, F ). Set G = O(2(m+ n), F ) and G0 = SO(2(m+ n), F ).

(1) Suppose that σ0
∼= sσ0 and that π0

∼= sπ0 for every irreducible subquotient
π0 of ρ o σ0. Then ρ o σ and ρo σ0 have the same number of irreducible
subquotients. Assume, in addition, that for any two irreducible subquotients
π and π′ of ρo σ, ŝπ � π′. Then

0 ⊂ π1 ⊂ · · · ⊂ πk = ρo σ
is a composition series for ρo σ if and only if

0 ⊂ rG0,G(π1) ⊂ · · · ⊂ rG0,G(πk) = ρo σ0

is a composition series for ρo σ0.
(2) Suppose that σ ∼= ŝσ and that π ∼= ŝπ for every irreducible subquotient

π of ρ o σ. Then ρ o σ and ρ o σ0 have the same number of irreducible
subquotients. Assume, in addition, that for any two irreducible subquotients
π0 and π′0 of ρo σ0, sπ0 � π′0. Then

0 ⊂ π0
1 ⊂ · · · ⊂ π0

k = ρo σ0

is a composition series for ρo σ0 if and only if

0 ⊂ iG,G0(π1) ⊂ · · · ⊂ iG,G0(πk) = ρo σ
is a composition series for ρo σ.

Proof. 1. According to Lemma 4.2, rG0,G(ρo σ) = ρo σ0. Let

ρo σ = π1 + · · ·+ πk,

where π1, . . . , πk are irreducible. For i = 1, . . . , k, let π0
i be an irreducible subquo-

tient of rG0,G(πi). Then π0
i is an irreducible component of rG0,G(ρo σ) = ρo σ0.

Since π0
i
∼= sπ0

i , we have (Lemma 4.1)

rG0,G(πi) = π0
i .

It follows that

ρo σ0 = rG0,G(ρo σ) = rG0,G(π1 + · · ·+ πk) = π0
1 + · · ·+ π0

k.



DEGENERATE PRINCIPAL SERIES FOR EVEN-ORTHOGONAL GROUPS 463

We deal with composition series inductively. In order to do this, we have to
work in slightly greater generality. To this end, suppose that π is an admissible
representation of G such that ŝπ ∼= π and π′ ∼= ŝπ′ for every irreducible subquotient
π′ of π. Further, assume the following: (1) if π′, π′′ are irreducible subquotients
of π, then π′ 6∼= ŝπ′′, and (2) if πi is an irreducible subquotient of π, then π0

i is
an irreducible subquotient of π0 = rG0,G(π). We note that these assumptions hold
when π = ρ o σ. Now, let π1 be an irreducible subquotient of π. We prove that
π1 is a subrepresentation of π if and only if π0

1 is a subrepresentation of π0. The
statement then follows by the induction on the number of irreducible subquotients.

Suppose that π1 is a subrepresentation of π. Then we have the exact sequence

0 −→ π1 −→ π −→ π/π1 −→ 0.

The functor rG0,G is exact ([B-Z], Proposition 1.9), so we have the exact sequence

0 −→ rG0,G(π1) −→ rG0,G(π) −→ rG0,G(π/π1) −→ 0;

i.e.,
0 −→ π0

1 −→ π0 −→ π0/π
0
1 −→ 0,

so π0
1 is a subrepresentation of π0.

Conversely, assume π0
1 ↪→ π0. Then the exact sequence

0 −→ π0
1 −→ π0 −→ π/π0

1 −→ 0

implies
0 −→ iG,G0(π0

1) −→ iG,G0(π0) −→ iG,G0(π0/π
0
1) −→ 0,

so, by Lemma 4.2, we have

0 −→ π0
1 ⊕ ŝπ0

1 −→ π ⊕ ŝπ −→ iG,G0(π0/π
0
1) −→ 0.

Therefore, π1 is a subrepresentation of π ⊕ ŝπ. By the assumption, π1 is not a
component of ŝπ. We conclude that π1 is a subrepresentation of π.

The proof of (2) is similar to that of (1). �

Lemma 4.6. Let ρi, i = 1, . . . , k be an irreducible essentially square-integrable rep-
resentation of GL(ni, F ) and σ an irreducible tempered representation of O(2m,F ),
m ≥ 0. If m > 0, let σ0 be an irreducible subquotient of rSO(2m,F ),O(2m,F )(σ). If
m = 0, let σ0 = 10. Set n = n1 + · · · + nk + m, G = O(2n, F ), G0 = SO(2n, F ).
Suppose that e(ρ1) ≤ · · · ≤ e(ρk) < 0. Then

τ = ρ1 ⊗ · · · ⊗ ρk ⊗ σ and τ0 = ρ1 ⊗ · · · ⊗ ρk ⊗ σ0

are Langlands data for G and G0 and

sL(τ0) = L(sτ0),

ŝL(τ) = L(ŝτ).

Moreover, L(τ) is a component of iG,G0(L(τ0)).

Proof. Let M0 (respectively, M) denote the standard Levi subgroup corresponding
to τ0 (respectively, τ).

The first equality follows from [B-J1], Proposition 4.5. According to Lemma 4.2,

iG,M (ŝτ) ∼= ŝiG,M(τ).

Now, L(ŝτ) is the unique irreducible subrepresentation of iG,M (ŝτ) and ŝL(τ) is the
unique irreducible subrepresentation of ŝiG,M(τ). It follows that ŝL(τ) ∼= L(ŝτ).
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To prove that L(τ) is a component of iG,G0(L(τ0)), suppose that σ0
∼= sσ0. Then

τ0 ∼= sτ0, τ � ŝτ , iM,M0(τ0) ∼= τ ⊕ ŝτ . We have

iG,G0 ◦ iG0,M0(τ0) ∼= iG,M (τ ⊕ ŝτ) ∼= iG,M(τ) ⊕ iG,M (ŝτ).

This representation has two irreducible subrepresentations, L(τ) and L(ŝτ). L(τ0)
is the unique irreducible subrepresentation of iG0,M0(τ0). Since sL(τ0) ∼= L(sτ0) ∼=
L(τ0), iG,G0(L(τ0)) is the direct sum of two irreducible representations. They are
subrepresentations of iG,G0 ◦ iG0,M0(τ0). It follows that

iG,G0(L(τ0)) ∼= L(τ)⊕ ŝL(τ) ∼= L(τ)⊕ L(ŝτ).

In the case σ0 � sσ0, the proof is similar. �

Lemma 4.7. Let ρ be an irreducible supercuspidal unitary representation of
GL(n, F ) and σ an irreducible supercuspidal representation of O(2m,F ), m ≥ 0.
If m > 0, let σ0 be an irreducible subquotient of rSO(2m,F ),O(2m,F )(σ). If m = 0,
let σ0 = 10. Set G = O(2(m+ n), F ), G0 = SO(2(m+ n), F ).

(1) Suppose that ρo σ0 is reducible. Let

ρo σ0
∼= T1(ρ;σ0)⊕ T2(ρ;σ0)

be the decomposition of ρo σ0 into the direct sum of two inequivalent irre-
ducible subrepresentations. Then there exists a decomposition

ρo σ ∼= T1(ρ;σ)⊕ T2(ρ;σ)

into the direct sum of two inequivalent irreducible subrepresentations such
that, for i = 1, 2, Ti(ρ;σ0) (resp., ζi(ρ, `;σ0)) is an irreducible subquotient
of rG0,G(Ti(ρ;σ)) (resp., rSO(2m+2`n,F ),O(2m+2`n,F )(ζi(ρ, `;σ))).
(a) If m > 0 and σ0

∼= sσ0, then

s(Ti(ρ;σ0)) ∼= Ti(ρ;σ0),

s(ζi(ρ, `;σ0)) ∼= ζi(ρ, `;σ0).

(b) If m = 0 or m > 0, σ0 � sσ0, then n is even and

s(Ti(ρ;σ0)) � Ti(ρ;σ0),

s(ζi(ρ, `;σ0)) � ζi(ρ, `;σ0).

(2) Suppose that n is odd and ρ ∼= ρ̃. If m > 0, suppose that σ0 � sσ0.
(a) ρo σ0 is an irreducible tempered representation and

ρo σ0
∼= s(ρo σ0).

(b) ρo σ is reducible and it is the direct sum of two inequivalent tempered
representations

ρo σ ∼= T1(ρ;σ)⊕ T2(ρ;σ),

rG0,G(T1(ρ;σ)) = rG0,G(T2(ρ;σ)) = ρo σ0,

rG0,G(ζ1(ρ, `;σ)) = rG0,G(ζ2(ρ, `;σ)) = ζ(ρ, `;σ0).
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5. Degenerate principal series for SO(2n, F )

In this section, we deal with generalized degenerate principal series for SO(2n, F ).
Let ρ, ρ0 be irreducible unitary supercuspidal representations of GL(m,F ),
GL(m0, F ). Let σ0 (resp., σ) be an irreducible supercuspidal representation of
SO(2r, F ) (resp. O(2r, F )) such that σ0 is a component of rSO(2r,F ),O(2r,F )(σ).
(We are allowing the possibility that r = 0 here.) Further, suppose that (ρ, σ) sat-
isfies (C0) (which implies ρ ∼= ρ̃). There are two possibilities (cf. Proposition 4.3):
(1) (ρ, σ0) also satisfies (C0), and (2) νxρoσ0 is irreducible for all x ∈ R (which can
happen only if m is odd and either r = 0 or σ0 6∼= sσ0). In the first case, the results
for ναζ(ρ0, k) o ζ1(ρ, `;σ0) are given in section 3. The proofs in section 3 are for
O(2n, F ); the proofs for SO(2n, F ) are handled in this section. In the second case,
the results for ναζ(ρ0, k)o ζ(ρ, `;σ0) are different than those in section 3; both the
statements and proofs are given in this section. In both cases, the proofs are built
from the results on ναζ(ρ0, k)o ζ(ρ, `;σ) and our study of rG0,G, iG,G0 from section
4.

We start by dealing with the first case, where (ρ, σ0) also satisfies (C0). We
prove Theorem 3.4. Set

π0 = ναζ(ρ, k)o ζ1(ρ, `;σ0),

π = ναζ(ρ, k)o ζ1(ρ, `;σ).

First, consider the case r 6= 0.
The irreducible subquotients in Theorem 3.4 are described as Langlands subrep-

resentations. Let

{L(τ) | τ ∈ T }

be the set of all irreducible subquotients appearing in the statement of Theorem
3.4. For τ ∈ T , denote by τ0 the representation obtained by replacing σ by σ0

(noting that since (ρ, σ0) also satisfies (C0), we have Ti(ρ, σ0) and δ(νρ;Ti(ρ, σ0))
defined). We have two possibilities: σ0

∼= sσ0 or σ0 6∼= sσ0.
1. Suppose that σ0

∼= sσ0. Then ζ1(ρ, `;σ0) ∼= sζ1(ρ, `;σ0) (Lemma 4.7) and
π0
∼= sπ0 (Lemma 4.2). By inspecting all τ ∈ T , we conclude that sτ0 ∼= τ0 and

sL(τ0) ∼= L(sτ0) ∼= L(τ0).

Also, for τ, τ ′ ∈ T we have

L(τ) � ŝL(τ ′).

Therefore, we are in the situation described by Lemma 4.5, (1). According to
Lemma 4.6,

L(τ0) ∼= rG0,G(L(τ)).

We conclude that π and π0 have the same number of irreducible components and
the same composition series structure.

Note that

rG0,G(π) = π0

and

rM0,G0(π0) = rM0,G0 ◦ rG0,G(π) = rM0,M ◦ rM,G(π).
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Therefore, Jacquet modules of π0 can be found by taking restrictions of Jacquet
modules of π. Let τ ′, τ ′′, τ ′′′ be as in the proof of Theorem 3.4; i.e.,

τ ′ = ν−k+j+1ρ⊗ ν −k2 +j+1ζ(ρ, k − 1)o ζ1(ρ, `;σ),

τ ′′ = ν−jρ⊗ ν −k2 +jζ(ρ, k − 1)o ζ1(ρ, `;σ),

τ ′′′ = ν−`+1ρ⊗ ν −k+1
2 +jζ(ρ, k)o ζ1(ρ, `− 1;σ).

Let
τ ′0 = ν−k+j+1ρ⊗ ν −k2 +j+1ζ(ρ, k − 1)o ζ1(ρ, `;σ0),

τ ′′0 = ν−jρ⊗ ν −k2 +jζ(ρ, k − 1)o ζ1(ρ, `;σ0),

τ ′′′0 = ν−`+1ρ⊗ ν −k+1
2 +jζ(ρ, k)o ζ1(ρ, `− 1;σ0).

Then, from σ0
∼= sσ0 and Lemmas 4.2 and 4.7, we can conclude

τ ′0 = rM0,M (τ ′),

τ ′′0 = rM0,M (τ ′′),

τ ′′′0 = rM0,M (τ ′′′)

and
s(m)(π0) = τ ′0 + τ ′′0 + τ ′′′0 .

2. Suppose that σ ∼= ŝσ, i.e, σ0 � sσ0. Condition (C0) implies that this is
possible only for m even. Then ζ1(ρ, `;σ) ∼= ŝζ1(ρ, `;σ), π ∼= ŝπ and τ ∼= ŝτ , for all
τ ∈ T . Theorem 3.4 for SO(2n, F ) follows from Lemma 4.5, (2) and Theorem 3.4
for O(2n, F ). According to Lemma 4.2,

rG0,G(π) = π0 + sπ0.

We have
rM0,G(π) = rM0,G0(π0) + srM0,G0(π0).

To find Jacquet modules of π0, we select half of the components of restrictions of
Jacquet modules of π. More precisely, we take the components containing σ0 (not
sσ0).

Now, consider the case r = 0. Note that to have (ρ, 10) satisfy (C0), we must have
m even. By Lemma 4.6, sζ1(ρ, `; 10) � ζ1(ρ, `; 10). We apply the same reasoning
as in the case σ0 � sσ0.

Propositions 3.2, 3.3 and Theorem 3.5 can be proved in a similar way. However,
for Proposition 3.3, the case r = 0, m even has to be considered separately. We
now give the proof of Proposition 3.3 for r = 0, m even. Let

π0 = ναζ(ρ, k)o 10,

π = ναζ(ρ, k)o 1.

Then
π = iG,G0(π0).

If π is irreducible, then π0 is irreducible.
Suppose that π is reducible. Recall that (Lemma 4.7)

Ti(ρ; 10) � sTi(ρ; 10),
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so
Ti(ρ; 1) ∼= ŝTi(ρ; 1)

and therefore
T1(ρ; 1) � ŝT2(ρ; 1).

According to Lemma 4.1 or Lemma 4.7,

Ti(ρ; 1) = iO(2m,F ),SO(2m,F )(Ti(ρ; 10)).

By inspecting all the cases in Proposition 3.3, we see that there is one-to-one cor-
respondence between components of π0 and irreducible components of π.

Let ρ be an irreducible unitary supercuspidal representation of GL(m,F ), m
odd. Suppose ρ ∼= ρ̃. Let σ0 be an irreducible supercuspidal representation of
SO(2n, F ), n ≥ 0. If n > 0, suppose that σ0 � sσ0.

Then, ρo σ0 is irreducible, but ρo σ is reducible (cf. Proposition 4.3).

Proposition 5.1. Let ρ be an irreducible unitary supercuspidal representation of
GL(m,F ), m odd. Suppose ρ ∼= ρ̃. Let σ0 be an irreducible supercuspidal representa-
tion of SO(2n, F ), n ≥ 0. If n > 0, suppose that σ0 � sσ0. Let π0 = ναρoζ(ρ, `;σ0)
with α ∈ R, ` ≥ 1. Then, π0 is reducible if and only if α ∈ {±1,±`}. Suppose π0

is reducible. By contragredience, we may assume α ≤ 0.
(1) α = −1, ` = 1

π0 = π0
1 + π0

2 + π0
3 + π0

4 with

π0
1 = L(ν−1ρ; ρo σ0), π0

2 = δ(νρ; ρo σ0), π0
3 = L(ν−

1
2 δ(ρ, 2);σ0), π0

4 = sπ0
3 .

In this case, π0
1 is the unique irreducible subrepresentation, π0

2 is the unique
irreducible quotient, and π0

3 ⊕ π0
4 is a subquotient. We have

s(m)π
0
1 = ν−1ρ⊗ ρo σ0,

s(m)π
0
2 = νρ⊗ ρo σ0,

s(m)π
0
3 = ρ⊗ L(ν−1ρ;σ0).

(2) α = −1, ` > 1
π0 = π0

1 + π0
2 with

π0
1 = L([ν−`+1ρ, ν−1ρ], ν−1ρ; ρo σ0), π0

2 = L([ν−`+1ρ, ν−1ρ]; δ(νρ; ρo σ0)).

In this case, π0
1 is the unique irreducible subrepresentation and π0

2 is the
unique irreducible quotient. We have
(a) ` = 2,

s(m)π
0
1 = 2ν−1ρ⊗ L(ν−1ρ; ρo σ0) + ν−1ρ⊗ L(ν−

1
2 δ(ρ, 2);σ0)

+ ν−1ρ⊗ s · L(ν−
1
2 δ(ρ, 2);σ0)

s(m)π
0
2 = ν−1ρ⊗ δ(νρ; ρo σ0) + νρ⊗ L(ν−1ρ; ρo σ0).

(b) ` > 2,

s(m)π
0
1 = ν−`+1ρ⊗L([ν−`+2ρ, ν−1ρ], ν−1ρ; ρoσ0)+ν−1ρ⊗L([ν−`+1ρ, ν−1ρ]; ρoσ0)

s(m)π
0
2 = ν−`+1ρ⊗L([ν−`+2ρ, ν−1ρ]; δ(νρ; ρoσ0))+νρ⊗L([ν−`+1ρ, ν−1ρ]; ρoσ0).
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(3) α = −`, ` > 1
π0 = π0

1 + π0
2 with

π0
1 = L([ν−`ρ, ν−1ρ]; ρo σ0), π0

2 = L(ν−`+
1
2 δ(ρ, 2), [ν−`+2ρ, ν−1ρ]; ρo σ0).

In this case, π0
1 is the unique irreducible subrepresentation and π0

2 is the
unique irreducible quotient. We have

s(m)π
0
1 = ν−`ρ⊗ L([ν−`+1ρ, ν−1ρ]; ρo σ0),

s(m)π
0
2 = ν−`+1ρ⊗ L(ν−`ρ, [ν−`+2ρ, ν−1ρ]; ρo σ0)

+ ν`ρ⊗ L([ν−`+1ρ, ν−1ρ]; ρo σ0).

Proof. First, we verify that π0 is reducible if and only if α ∈ {±1,±`}. Let

π = ναρo ζ1(ρ, `;σ),

τ = ναρ⊗ ζ1(ρ, `;σ),

τ0 = ναρ⊗ ζ(ρ, `;σ0).

We show that π is irreducible if and only if π0 is irreducible. The result then follows
from Proposition 3.2. Notice that τ0 ∼= sτ0 and therefore π0

∼= sπ0. By Lemmas
4.1 and 4.2,

iM,M0(τ0) = τ + ŝτ,

iG,G0(π0) = iG,M (τ + ŝτ) = π + ŝπ,

rG0,G(π) = π0.

Therefore, if π0 is irreducible, then π is irreducible. Conversely, suppose that π
is irreducible. We can prove by Jacquet module considerations that ŝπ � π. Ac-
cording to Lemma 4.1, π0 = rG0,G(π) is irreducible. Thus, we have the reducibility
points claimed.

Now, suppose that π is reducible. We verify (1).
First, Proposition 3.2 tells us that π decomposes as π = π1 + π2 + π3 where

π1 = L(ν−1ρ;T1(ρ;σ)), π2 = δ(νρ;T1(ρ;σ)), π3 = L(ν−
1
2 δ(ρ, 2);σ).

Then
π0 = rG0,G(π) = rG0,G(π1 + π2 + π3) = π0

1 + π0
2 + π0

3 + sπ0
3 ,

where

π0
1 = L(ν−1ρ; ρo σ0), π0

2 = δ(νρ; ρo σ0), π0
3 = L(ν−

1
2 δ(ρ, 2);σ0).

Note that π0
1
∼= sπ0

1 , π0
2
∼= sπ0

2 , π0
3 � sπ0

3 .
Let N0 be the standard Levi subgroup of G0 = SO(4m + 2n, F ) isomorphic to

GL(m,F )× SO(2m+ 2n, F ). Then

s(m)π
0
1 = rN0,G0(π0

1) = rN0,G0 ◦ rG0,G(π1) = rN0,N ◦ rN,G(π1) = rN0,N(s(m)π1).

Similarly, s(m)π
0
2 = rN0,N(s(m)π2). For π0

3 , we have

s(m)π
0
3 + s · s(m)π

0
3 = rN0,G0(π0

3 + sπ0
3)

= rN0,N ◦ rN,G(π3)

= rN0,N (s(m)π3)

= ρ⊗ L(ν−1ρ;σ0) + ρ⊗ sL(ν−1ρ;σ0).
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Let M0 be the standard Levi subgroup of G0 = SO(4m + 2n, F ) isomorphic to
GL(m,F )×GL(m,F )× SO(2m+ 2n, F ). From the Langlands data, we see that

rN0,G0(π3) ≥ ν− 1
2 δ(ρ, 2)⊗ σ0

⇓
rM0,G0(π3) ≥ ρ⊗ ν−1ρ⊗ σ0.

It follows that
s(m)π

0
3 = ρ⊗ L(ν−1ρ;σ0).

Proposition 3.2 and the exactness of the functor rG0,G tell us that π0
1 is a sub-

representation, π0
2 a quotient, and π0

3 ⊕ π0
4 a subquotient of π0. To see that π0

1 is
the unique irreducible subrepresentation, suppose that π0

i is a subrepresentation of
π0. Applying iG,G0 to the exact sequence

0 −→ π0
i −→ π0 −→ π0/π

0
i −→ 0,

we obtain
0 −→ iG,G0(π0

i ) −→ π ⊕ ŝπ −→ iG,G0(π0/π
0
i ) −→ 0.

It follows that iG,G0(π0
i ) is a subrepresentation of π⊕ ŝπ. Since πi ↪→ iG,G0(π0

i ), we
have πi ↪→ π⊕ ŝπ. Therefore, πi ∼= π1 or πi ∼= ŝπ1. By checking all irreducible sub-
quotients of π, we obtain πi ∼= π1. It follows that π0

1 is the unique subrepresentation
of π0. The proof that π0

2 is the unique quotient of π0 is similar.
(2) and (3) are done analogously. In these cases, the composition series for π0

follow from Lemma 4.5. �

Proposition 5.2. Let ρ be an irreducible unitary supercuspidal representation
of GL(m,F ), m odd. Suppose ρ ∼= ρ̃. Let σ0 be an irreducible supercuspidal
representation of SO(2n, F ), n ≥ 0. If n > 0, suppose that σ0 � sσ0. Let
π0 = ναζ(ρ, k) o σ0 with α ∈ R, k ≥ 2. Then π0 is reducible if and only if
α ∈ {−k+1

2 , −k+3
2 , . . . , k−1

2 } \ {0}. Suppose π0 is reducible. By contragredience, we
may assume that α ≤ 0. Write α = −k+1

2 + j with 0 ≤ j ≤ k−3
2 . Then π0 = π0

1 +π0
2

with
π0

1 = L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ]; ρo σ0)

and

π0
2 = sj+1L([ν−k+j+1ρ, ν−j−2ρ], ν−j−

1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ0).

In this case, π0
1 is the unique irreducible subrepresentation and π0

2 the unique irre-
ducible quotient.

(1) j = 0 = k−2
2 (k = 2),

s(m)π
0
1 = ν−1ρ⊗ (ρo σ0),

s(m)π
0
2 = ρ⊗ sL(ν−1ρ;σ0).

(2) j = 0, k > 2,

s(m)π
0
1 = ν−k+1ρ⊗ L([ν−k+2ρ, ν−1ρ]; ρo σ0),

s(m)π
0
2 = ν−k+1ρ⊗ sL([ν−k+2ρ, ν−2ρ], ν−

1
2 δ(ρ, 2);σ0)

+ρ⊗ sL([ν−k+1ρ, ν−1ρ];σ0).
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(3) j = k−2
2 , k ≥ 4 (k even),

s(m)π
0
1 = ν−

k
2 ρ⊗ L([ν−

k
2 +1ρ, ν−1ρ], [ν−

k
2 +1ρ, ν−1ρ]; ρo σ0)

+ν−
k
2 +1ρ⊗ sL([ν−

k
2 ρ, ν−1ρ], [ν−

k
2 +2ρ, ν−1ρ]; ρo σ0)

s(m)π
0
2 = ν−

k
2 +1ρ⊗ sj+1L(ν−

k
2 ρ, ν

−k+3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ0).

(4) 0 < j < k−2
2 ,

s(m)π
0
1 = ν−k+j+1ρ⊗ L([ν−k+j+2ρ, ν−1ρ], [ν−jρ, ν−1ρ]; ρo σ0)

+ ν−jρ⊗ sL([ν−k+j+1ρ, ν−1ρ], [ν−j+1ρ, ν−1ρ]; ρo σ0),

s(m)π
0
2 = ν−k+j+1ρ⊗ sj+1L([ν−k+j+2ρ, ν−j−2ρ], ν−j−

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ0)

+ ν−jρ⊗ sj+1L([ν−k+j+1ρ, ν−j−1ρ], ν−j+
1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ0).

Proof. Let π = ναζ(ρ, k) o σ. Then π = iG,G0(π0). We consider the cases from
Proposition 3.3.

(i) If j = k−1
2 (i.e., α = 0), then π = π1 + π2 with

πi = L([ν
−k+1

2 ρ, ν−1ρ], [ν
−k+1

2 ρ, ν−1ρ];Ti(ρ; τ))

for i = 1, 2. We have

π0 + sπ0 = rG0,G ◦ iG,G0(π0) = rG0,G(π)

= rG0,G(π1 + π2) = 2L([ν
−k+1

2 ρ, ν−1ρ], [ν
−k+1

2 ρ, ν−1ρ]; ρo σ0).

It follows that

π0 = L([ν
−k+1

2 ρ, ν−1ρ], [ν
−k+1

2 ρ, ν−1ρ]; ρo σ0)

is irreducible.
(ii) Let 0 ≤ j < k−1

2 . By Proposition 3.3, π = π1 + π2 + π3 with

πi = L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ];Ti(ρ;σ))

for i = 1, 2 and

π3 = L([ν−k+j+1ρ, ν−j−2ρ], ν−j−
1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ).

We have
π0 + sπ0 = rG0,G ◦ iG,G0(π0) = rG0,G(π) = rG0,G(π1 + π2 + π3)

= 2L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ]; ρo σ0)

+ L([ν−k+j+1ρ, ν−j−2ρ], ν−j−
1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ0)

+ sL([ν−k+j+1ρ, ν−j−2ρ], ν−j−
1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ0).

It follows that π0 = π0
1 + π0

2 with

π0
1 = L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ]; ρo σ0)

and

π0
2 = sεL([ν−k+j+1ρ, ν−j−2ρ], ν−j−

1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ0),

where ε = 0 or 1. Consider the standard Levi subgroup of G0,

Q0 ∼= GL(m,F )× · · · ×GL(m,F )︸ ︷︷ ︸
k

×SO(2n, F ).
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Let

ψ = ν−k+j+1ρ⊗ ν−j−2ρ⊗ (ν−jρ⊗ ν−j−1ρ)

⊗ (ν−j+1ρ⊗ ν−jρ)⊗ · · · ⊗ (ν−1ρ⊗ ν−2ρ)⊗ (ρ⊗ ν−1ρ)⊗ σ0.

By Frobenius reciprocity,

rQ0,G0(L([ν−k+j+1ρ, ν−j−2ρ], ν−j−
1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ0)) ≥ ψ

and

rs(Q0),G0(sL([ν−k+j+1ρ,ν−j−2ρ], ν−j−
1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2),

. . . , ν−
1
2 δ(ρ, 2);σ0)) ≥ sψ.

We apply Corollary 5.3 and Lemma 6.2 of [Ban3] to compute rQ0,G0(π0). We
observe that, for j odd, the multiplicity of ψ in rQ0,G0(π0) is 1 and the multiplicity of
sψ in rs(Q0),G0(π0) is 0. It follows that ε = 0. Similarly, for j even, the multiplicity
ψ in rQ0,G0(π0) is 0 and the multiplicity of sψ in rs(Q0),G0(π0) is 1. It follows that
ε = 1.

Now,

s(m)π0+s·s(m)π0 = rN0,G0(π0+sπ0) = rN0,G(π) = rN0,N(s(m)π1+s(m)π2+s(p)π3).

Consider the case (a) from the Proposition 3.3. Then

s(m)π0 + s · s(m)π0 = 2ν−1ρ⊗ (ρo σ0) + ρ⊗ L(ν−1ρ;σ0) + ρ⊗ sL(ν−1ρ;σ0).

It follows that
s(m)π0 = ν−1ρ⊗ (ρo σ0) + ρ⊗ L(ν−1ρ;σ0)

and
s(m)π

0
1 = ν−1ρ⊗ (ρo σ0),

s(m)π
0
2 = ρ⊗ sεL(ν−1ρ;σ0),

where ε = 0 or 1.
To determine ε, observe that in general,

s(m)(π) = να+−k+1
2 ρ⊗ να+ 1

2 ζ(ρ, k − 1)o σ + ν−α+−k+1
2 ρ̃⊗ να− 1

2 ζ(ρ, k − 1)o σ.

Since m is odd, an odd number of sign changes are required to produce ν−α+−k+1
2 ρ̃.

Therefore,

s(m)(π0) = να+−k+1
2 ρ⊗να+ 1

2 ζ(ρ, k−1)oσ0 +ν−α+−k+1
2 ρ̃⊗s(να− 1

2 ζ(ρ, k−1)oσ0).

When j = 0 = k−2
2 (k = 2), we get α = − 1

2 and

s(m)(π0) = ν−1ρ⊗ (ρo σ0) + ρ⊗ s(ν−1ρo σ0)

= ν−1ρ⊗ (ρo σ0) + ρ⊗ sL(ν−1ρ;σ0).

Thus, we see that ε = 1.
For the remaining cases, the proofs are similar. �

Theorem 5.3. Let ρ be an irreducible unitary supercuspidal representation of
GL(m,F ), m odd. Suppose ρ ∼= ρ̃. Let σ0 be an irreducible supercuspidal rep-
resentation of SO(2n, F ), n ≥ 0. If n > 0, suppose that σ0 � sσ0. Let π0 =
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ναζ(ρ, k) o ζ(ρ, `;σ0). Suppose k ≥ 2 and ` ≥ 1 (the cases k = 1 and ` = 0 are
covered by Propositions 5.1 and 5.2 above). Then, π0 is reducible if and only if

α ∈ {±(`+ k−1
2 ),±(`+ k−1

2 − 1), . . . ,±(`+ −k+1
2 )}

∪{{−k−1
2 , −k−1

2 + 1, . . . , k+1
2 } \ {0 if k = 2`− 1}}.

(We note that these sets need not be disjoint.) Let S1 denote the first set, and
S2 the second. Suppose π0 is reducible. By contragredience, we may restrict our
attention to the case α ≤ 0.

(1) α 6∈ S2.
In this case, we have π0 = π0

1 + π0
2 , where

π0
1 = L([να−

k−1
2 ρ, να+ k−1

2 ρ], [ν−`+1ρ, ν−1ρ]; ρo σ0),

π0
2 = L([να−

k−1
2 ρ, ν−`−1ρ],

ν−`+
1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , να+ k

2 δ(ρ, 2), [να+ k−1
2 +2ρ, ν−1ρ]; ρo σ0).

π0
1 is the unique irreducible subrepresentation and π0

2 is the unique irre-
ducible quotient.

(2) α = −k−1
2 .

One component of π0 is the following:

π0
1 = L([ν−kρ, ν−1ρ], [ν−`+1ρ, ν−1ρ]; ρo σ0).

The other components are described below.
(a) ` = 1 (so k > `− 1).

In this case, there are three additional components:

π0
2 = L([ν−kρ, ν−2ρ]; δ(νρ; ρo σ0)),

π0
3 = L([ν−kρ, ν−2ρ], ν−

1
2 δ(ρ, 2);σ0)

and
π0

4 = sπ0
3 .

π0
1 is the unique irreducible subrepresentation, π0

2 is the unique irre-
ducible quotient, and π0

3 ⊕ π0
4 is a subquotient.

(b) k > `− 1 > 0.
In this case, there are four additional components:

π0
2 = L([ν−kρ, ν−2ρ], [ν−`+1ρ, ν−1ρ]; δ(νρ; ρo σ0)),

π0
3 = L([ν−kρ, ν−`−1ρ], ν−`+

1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

3
2 δ(ρ, 2); δ(νρ; ρo σ0))

π0
4 = L([ν−kρ, ν−`−1ρ], ν−`+

1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2);σ0)

π0
5 = sπ0

4 .

π0
1 is the unique irreducible subrepresentation, π0

3 is the unique irre-
ducible quotient, and π0

2 ⊕ π0
4 ⊕ π0

5 is a subquotient.
(c) `− 1 = k.

In this case, there is one additional component:

π0
2 = L([ν−kρ, ν−2ρ], [ν−kρ, ν−1ρ]; δ(νρ; ρo σ0)).

π0
1 is the unique irreducible subrepresentation and π0

2 is the unique
irreducible quotient.
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(d) `− 1 > k.
In this case, there is one additional component:

π0
2 = L([ν−`+1ρ, ν−2ρ], [ν−kρ, ν−1ρ]; δ(νρ; ρo σ0)).

π0
1 is the unique irreducible subrepresentation and π0

2 is the unique
irreducible quotient.

(3) α ∈ S2.
Write α = −k+1

2 + j, with 0 ≤ j ≤ k−1
2 . One component of π0 is π0

1 ,
where π0

1 is defined as follows:

π0
1 = L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ], [ν−`+1ρ, ν−1ρ]; ρ× ρo σ0).

The remaining components are described below, on a case by case basis.
(a) k − j − 1 > j > `− 1.

We have two additional components:

π0
2 = L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−`−1ρ],

ν−`+
1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); ρo σ0),

π0
3 = L([ν−k+j+1ρ, ν−j−2ρ], [ν−`+1ρ, ν−1ρ],

ν−j−
1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); ρo σ0).

π0
3 is the unique irreducible quotient and π0

1⊕π0
2 is a subrepresentation.

(b) k − j − 1 = j > `− 1.
We have one additional component:

π0
2 = L([ν

−k+1
2 ρ, ν−1ρ], [ν

−k+1
2 ρ, ν−`−1ρ],

ν−`+
1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); ρo σ0).

In this case, π0 = π0
1 ⊕ π0

2 .
(c) k − j − 1 > j = `− 1.

We have one additional component:

π0
2 = L([ν−k+j+1ρ, ν−`−1ρ], [ν−`+1ρ, ν−1ρ],

ν−`+
1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); ρo σ0).

π0
1 is the unique irreducible subrepresentation and π0

2 is the unique
irreducible quotient.

(d) k − j − 1 > `− 1 > j.
We have three additional components:

π0
2 = L([ν−k+j+1ρ, ν−2ρ], [ν−`+1ρ, ν−j−2ρ],

ν−j−
1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); δ(νρ; ρo σ0)),

π0
3 = L([ν−k+j+1ρ, ν−`−1ρ], ν−`+

1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−j−

5
2 δ(ρ, 2),

ν−j−1δ(ρ, 3), ν−jδ(ρ, 3), . . . , ν−1δ(ρ, 3); δ(νρ; ρo σ0)).

π0
4 = L([ν−k+j+1ρ, ν−`−1ρ], [ν−jρ, ν−1ρ],

ν−`+
1
2 δ(ρ, 2), ν−`+

3
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); ρo σ0).

π0
1 is the unique irreducible subrepresentation, π0

3 is the unique irre-
ducible quotient, and π0

2 ⊕ π0
4 is a subquotient.

(e) k − j − 1 = `− 1 > j.
We have one additional component:

π0
2 = L([ν−`+1ρ, ν−k+`−2ρ], [ν−`+1ρ, ν−2ρ],

ν−k+`− 1
2 δ(ρ, 2), ν−k+`+ 1

2 δ(ρ, 2), . . . , ν−
1
2 δ(ρ, 2); δ(νρ; ρo σ0)).
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π0
1 is the unique irreducible subrepresentation and π0

2 is the unique
irreducible quotient.

(f) `− 1 > k − j − 1 > j.
(i) If j = 0, the representation π0

2 below is the only other component.
In this case, π0

1 is the unique irreducible subrepresentation and
π0

2 is the unique irreducible quotient.
(ii) If j > 0, there are two additional components:

π0
2 = L([ν−k+j+1ρ, ν−2ρ], [ν−`+1ρ, ν−j−2ρ],

ν−j−
1
2 δ(ρ, 2), ν−j+

1
2 δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); δ(νρ; ρo σ0)),

π0
3 = L([ν−`+1ρ, ν−k+j−1ρ], [ν−jρ, ν−2ρ],

ν−k+j+ 1
2 δ(ρ, 2), ν−k+j+ 3

2 δ(ρ, 2), . . . , ν−
1
2 δ(ρ, 2); δ(νρ; ρo σ0)).

In this case, π0
2 is the unique irreducible quotient and π0

1 ⊕ π0
3 is

a subrepresentation.
(g) `− 1 > k − j − 1 = j.

We have one additional component:

π0
2 = L([ν−`+1ρ, ν

−k−3
2 ρ], [ν

−k+1
2 ρ, ν−2ρ],

ν−
k
2 δ(ρ, 2), ν−

k
2 +1δ(ρ, 2), . . . , ν−

1
2 δ(ρ, 2); δ(νρ; ρo σ0)).

In this case, π0 = π0
1 ⊕ π0

2 .
We note that the case k − j − 1 = j = `− 1 is a point of irreducibility.

Proof. Let
π = ναζ(ρ, k)o ζ1(ρ, `;σ).

As in the proof of Proposition 5.1, we obtain

π0 = rG0,G(π).

The irreducible subquotients and composition series structure of π are described in
Theorem 3.4. We argue as above to obtain the corresponding results for π0. �

Remark 5.4. Let π0, π be as in the proof of Theorem 5.3. The proof of Theorem
3.4 describes Jacquet modules of components of π. We may apply restriction to
obtain Jacquet modules of irreducible components of π0, as follows: Let πi be a
component of π. If rG0,G(πi) = π0

i is irreducible, then

s(m)(π0
i ) = rG0,G(s(m)(πi)).

If rG0,G(πi) is reducible, then rG0,G(πi) = π0
i + s · π0

i and

(1) rG0,G(s(m)(πi)) = s(m)(π0
i ) + s · s(m)(π0

i ).

The components of s(m)(π0
i ) can be computed from (1) up to s. We can determine

whether s appears in a component of s(m)(π0
i ) by observing that if rG0,G(πi) is

reducible, then π0
i 6∼= sπ0

i . Such components appear only in cases 2(a) and (b) (in
particular, π0

3 , π
0
4 for 2(a) and π0

4 , π
0
5 for 2(b)). In either case, exactly one of π0

i , sπ
0
i

appears as a component of ν
−k+`−1

2 ζ(ρ, k + `) o σ0, hence has Jacquet module
described in Proposition 5.2.

Suppose ρ 6∼= ρ0 are representations of GL(m,F ) and GL(m0, F ). We continue
to assume ρ ∼= ρ̃ with m odd and either σ0 6∼= sσ0 or σ0 = 10. In order to build on
Theorem 3.5, we want (ρ0, σ) to satisfy (C0). We can characterize this in terms of
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ρ0 and σ0 by requiring that either (ρ0, σ0) satisfies (C0) or ρ0
∼= ρ̃0 with m0 odd (by

Proposition 4.3). Then, by [Gol1], ρ0 × ρo σ0 is the direct sum of two irreducible
subrepresentations. Write

ρ0 × ρo σ0 = T1(ρ0, ρ;σ0) + T2(ρ0, ρ;σ0).

Theorem 5.5. Suppose ρ 6∼= ρ0 are irreducible unitary supercuspidal representa-
tions of GL(m,F ) and GL(m0, F ). Assume that ρ ∼= ρ̃ and m odd. Let σ0 be an
irreducible supercuspidal representation of SO(2n, F ), n ≥ 0. If n > 0, suppose that
σ0 � sσ0. We also assume that either (ρ0, σ0) satisfies (C0) or ρ0

∼= ρ̃0 with m0

odd. Let π0 = ναζ(ρ0, k)oζ(ρ, `;σ0) with α ∈ R, k ≥ 1. Then π0 is reducible if and
only if α ∈ {−k+1

2 , −k+3
2 , . . . , k−1

2 }. Suppose π0 is reducible. By contragredience,
we may assume that α ≤ 0. Write α = −k+1

2 + j with 0 ≤ j ≤ k−1
2 .

(1) j = k−1
2

π0 = π0
1 + π0

2 with

π0
i = L([ν−`+1ρ, ν−1ρ], [ν

−k+1
2 ρ0, ν

−1ρ0], [ν
−k+1

2 ρ0, ν
−1ρ0];Ti(ρ0, ρ;σ0))

for i = 1, 2. In this case, π0 = π0
1 ⊕ π0

2 .
(2) 0 ≤ j < k−1

2

π0 = π0
1 + π0

2 + π0
3 with

π0
i = L([ν−`+1ρ, ν−1ρ], [ν−k+j+1ρ0, ν

−1ρ0], [ν−jρ0, ν
−1ρ0];Ti(ρ0, ρ;σ0))

for i = 1, 2 and

π0
3 = L([ν−`+1ρ, ν−1ρ], [ν−k+j+1ρ0, ν

−j−2ρ0], ν−j−
1
2 δ(ρ0, 2),

ν−j+
1
2 δ(ρ0, 2), . . . , ν−

1
2 δ(ρ0, 2); ρo σ0).

In this case, π0
3 is the unique irreducible quotient and π0

1 ⊕ π0
2 is a subrep-

resentation.

Proof. Let π = ναζ(ρ0, k) o ζ1(ρ, `;σ). The irreducible subquotients and compo-
sition series structure of π are described in Theorem 3.4. We argue as above to
obtain the corresponding results for π0. The Jacquet modules may be determined
as in (the first part of) Remark 5.4. �
Remark 5.6. Let ρ and σ be as in the preceding corollary. Suppose ρ0 is an irre-
ducible unitary supercuspidal representation of GL(m0, F ) with ρ0 6∼= ρ̃0. Then,
ναζ(ρ0, k)o ζ1(ρ, `;σ) is irreducible for all α ∈ R.

6. Appendix

Let G be the group of F -points of a quasi-split reductive algebraic group de-
fined over F . Let G0 denote the connected component of the identity in G. For
convenience, suppose that

G = G0 o C,
with C a finite abelian group (that G is the semidirect product of G0 and C is not
required, but it is easier to formulate in that case). We now describe how to get
from the general formulation of the Langlands classification ([B-W], [Sil1], [B-J1])
to the explicit description for even-orthogonal groups given in section 2 (patterned
after [Tad2], [Jan2]).

We recall that we call an irreducible representation ofG tempered if its restriction
to G0 is tempered (cf. Definition 2.5, [B-J1]).
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Let Π be the set of simple roots for G0. For Φ ⊂ Π, we let PΦ = MΦUΦ be the
standard parabolic subgroup of G0 determined by Φ. Fix an order on Π. Then,
there is a lexicographic order on subsets of Π. We define

XC = {Φ ⊂ Π |Φ is maximal among {c · Φ}c∈C}.

Let C(Φ) = {c ∈ C | c ·Φ = Φ}. We call P = MUΦ, where MΦ ≤M ≤MΦ oC(Φ)
and Φ ∈ XC , a standard parabolic subgroup of G.

Set P 0 = PΦ. Let A be the split component of MΦ, a the real Lie algebra of A,
and a∗ its dual. Let Π(P 0, A) ⊂ a∗ denote the set of simple roots corresponding to
the pair (P 0, A). We set

a∗− = {x ∈ a∗ | 〈x, α〉 < 0, ∀α ∈ Π(P 0, A)},
a∗−(C) = {x ∈ a∗− |x � c · x, ∀c ∈ C(Φ)},

where 〈·, ·〉 is a C(Φ)-invariant inner product on a∗× a∗ and � is the lexicographic
order inherited from the order on Π (cf. section 3, [B-J1] for details).

Definition 6.1. A set of Langlands data for G is a triple (P, x, τ) with the
following properties:

(1) P = MU is a standard parabolic subgroup of G.
(2) x ∈ a∗−(C).
(3) M = MΦ o C(Φ, x), where C(Φ, x) = {c ∈ C(Φ) | c · x = x}.
(4) τ ∈ Irr(M) is tempered.

Theorem 6.2 (The Langlands classification). There is a bijective correspondence

Lang(G)←→ Irr(G),

where Lang(G) denotes the set of all triples of Langlands data. Furthermore, if
(P, x, τ) ↔ π under this correspondence, then π is the unique irreducible subrepre-
sentation of iG,M (exp x⊗ τ).

We now consider the group SO(2n, F ). The maximal split torus A∅ of SO(2n, F )
is

A∅ =
{
diag(a1, . . . , an, a

−1
n , . . . , a−1

1 ) | ai ∈ F×
} ∼= (F×)n.

Let a denote the usual isomorphism of (F×)n into A∅, defined by

a(a1, ..., an) = diag(a1, . . . , an, a
−1
n , . . . , a−1

1 ).

The group X(A∅)F of F -rational characters of A∅ has a basis
{
e0

1, . . . , e
0
n

}
, where

e0
i is defined by

e0
i (a(a1, ..., an)) = ai.

Thus, a∗0 =
{
x1e

0
1 + · · ·+ xne

0
n | xi ∈ R

}
. The roots of SO(2n, F ) form a root

system of type Dn. The set of simple roots is Π = {α1, . . . , αn}, where αi =
e0
i − e0

i−1, for 1 ≤ i ≤ n − 1, and αn = e0
n−1 + e0

n. For our order on Π, we take
αi > αj if i < j.

Let Φ ⊂ Π. We now describe the standard parabolic subgroup PΦ = MΦUΦ.
Write Φ in the form Φ = Π\ {αi1 , . . . , αik}, where i1 < i2 < ... < ik. We have two
cases.
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A) If αn−1 ∈ Φ or αn−1 /∈ Φ, αn /∈ Φ, then

MΦ =
{
diag(g1, ..., gk, h,

τg−1
k , ..., τg−1

1 ) | gi ∈ GL(ni, F ), h ∈ SO(2(n−m), F )
}
,

where n1 = i1, n1 + n2 = i2, ..., n1 + · · ·+ nk = ik = m. We have

MΦ
∼= GL(n1, F )×GL(n2, F )× · · · ×GL(nk, F )× SO(2(n−m), F ).

B) If αn−1 /∈ Φ, αn ∈ Φ, then

MΦ = sMΦ′s,

where Φ′ = s(Φ),

MΦ =
{
diag(g1, ..., gk,

τg−1
k , ..., τg−1

1 ) | gi ∈ GL(ni, F )
}
.

Now, we will describe the set a∗− which appears in the definition of Langlands
data. We have four cases.

A) Suppose that αn−1 ∈ Φ or αn−1 /∈ Φ, αn /∈ Φ. Then

A = {a(a1, . . . , a1︸ ︷︷ ︸
n1

, . . . , ak, . . . , ak︸ ︷︷ ︸
nk

, 1, . . . , 1︸ ︷︷ ︸
n−m

) | ai ∈ F×}.

The basis for X(A)F is {e1, . . . , ek}, where

ej : a(a1, . . . , a1︸ ︷︷ ︸
n1

, . . . , ak, . . . , ak︸ ︷︷ ︸
nk

, 1, . . . , 1︸ ︷︷ ︸
n−m

) 7→ aj .

We have a∗ = {x1e1 + · · ·+ xkek | xj ∈ R}. The set Π(P,A) = {β1, . . . , βk}
⊂ a∗ corresponds to Π \ Φ = {αi1 , . . . , αik} ⊂ a∗0. For 1 ≤ j ≤ k − 1,
βj = ej−1 − ej .

A.1) If αn−1 ∈ Φ, αn ∈ Φ, then βk = ek (αik = αm = e0
m − e0

m+1). Take
x = x1e1 + · · ·+ xkek ∈ a∗. Then

x ∈ a∗− ⇔


x1 − x2 < 0,
...
xk−1 − xk < 0,
xk < 0.

This implies x1 < · · · < xk < 0, so

a∗− = {x1e1 + · · ·+ xkek | x1 < · · · < xk < 0} .
A.2) If αn−1 ∈ Φ, αn /∈ Φ, then βk = 2ek (αik = αn = e0

n−1 + e0
n), and

a∗− = {x1e1 + · · ·+ xkek | x1 < · · · < xk < 0} .
A.3) If αn−1 /∈ Φ, αn /∈ Φ, then nk = 1, βk = ek−1 + ek and

a∗− = {x1e1 + · · ·+ xkek | x1 < · · · < xk−1 < −|xk|} .
B) Suppose that αn−1 /∈ Φ, αn ∈ Φ. Then

A = {a(a1, . . . , a1︸ ︷︷ ︸
n1

, . . . , ak, . . . , ak︸ ︷︷ ︸
nk−1

, a−1
k ) | ai ∈ F×},

and we have βk = 2ek (αik = αn = e0
n−1 − e0

n),

a∗− = {x1e1 + · · ·+ xkek | x1 < · · · < xk < 0} .
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For x = x1e1 + · · ·+ xkek ∈ a∗, we have

exp x = νx1 ⊗ · · · ⊗ νxk ⊗ 1.

This means that the value of exp x on m = diag(g1, ..., gk, h,
τg−1
k , ..., τg−1

1 ) is

exp x(m) = |det g1|x1 . . . |det gk|xk .

Proposition 6.3 (The Langlands classification for SO(2n, F )). (i) Let ρi, i =
1, . . . , k, be an irreducible essentially tempered representation of GL(ni, F ) and τ0
an irreducible tempered representation of SO(2m,F ).

(1) Suppose that m ≥ 1 and e(ρ1) < · · · < e(ρk) < 0. Then the representation
ρ1 × · · · × ρk o τ0 has a unique irreducible subrepresentation L(ρ1 ⊗ · · · ⊗
ρk ⊗ τ0).

(2) Suppose that m = 0, nk > 1 and e(ρ1) < · · · < e(ρk) < 0. Then the
representation ρ1×· · ·×ρko10 (resp. ρ1×· · ·×ρk−1×s(ρko10)) has a unique
irreducible subrepresentation L(ρ1⊗· · ·⊗ρk⊗10) (resp. L(ρ1⊗· · ·⊗ρk−1⊗
s(ρk⊗10))). Further, L(ρ1⊗· · ·⊗ρk⊗10) � L(ρ1⊗· · ·⊗ρk−1⊗s(ρk⊗10)).

(3) Suppose that m = 0, nk = 1 and e(ρ1) < · · · < e(ρk−1) < −|e(ρk)| <
0. Then the representation ρ1 × · · · × ρk o 10 has a unique irreducible
subrepresentation L(ρ1 ⊗ · · · ⊗ ρk ⊗ 10).

(ii) Let σ0 be an irreducible admissible representation of SO(2n, F ). Then there
exists a unique datum as in (i) such that σ0

∼= L(·).

One remark is in order. We note that SO(2, F ) ∼= F×. Thus, a unitary character
of F× may be viewed as a tempered representation of SO(2, F ). This allows us to
have the < 0 in part 3; if e(ρk) = 0, it is covered by part 1.

Now, we follow Theorem 6.2 to obtain the Langlands classification for O(2n, F ).
First, we have to determine the set XC . Since αn−1 < αn in the order on Π, we
easily see that

Φ ∈ XC ⇔ (αn−1 ∈ Φ or αn−1 /∈ Φ, αn /∈ Φ).

A.1) If αn−1 ∈ Φ, αn ∈ Φ, then C(Φ) = {1, s}. For every x ∈ a∗−, we have
s · x = x, so a∗−(C) = a∗− and C(Φ, x) = {1, s}.

A.2) If αn−1 ∈ Φ, αn /∈ Φ, then C(Φ) = {1}. It follows that a∗−(C) = a∗− and
C(Φ, x) = {1}, for every x ∈ a∗−(C).

A.3) If αn−1 /∈ Φ, αn /∈ Φ, then C(Φ) = {1, s}. Take x ∈ a∗−. Then x =
x1e1 + · · ·+ xkek, where x1 < · · · < xk−1 < −|xk|. The action of s on x is
given by

s · x = x1e1 + · · ·+ xk−1ek−1 − xkek.
The condition x � s ·x implies 〈x, αk−1〉 ≥ 〈x, αk〉. This gives xk−1− xk ≥
xk−1 + xk, so xk ≤ 0. It follows that

a∗−(C) = {x1e1 + · · ·+ xkek | x1 < · · · < xk ≤ 0} .
If xk < 0, then C(Φ, x) = {1}. If xk = 0, then C(Φ, x) = {1, s}.

Proposition 6.4 (The Langlands classification for O(2n, F )). (i) Let ρi, i =
1, . . . , k, be an irreducible essentially tempered representation of GL(ni, F ) and τ
an irreducible tempered representation of O(2m,F ). Suppose that e(ρ1) < · · · <
e(ρk) < 0. Then the representation ρ1 × · · · × ρk o τ has a unique irreducible
subrepresentation L(ρ1 ⊗ · · · ⊗ ρk ⊗ τ).
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(ii) Let σ be an irreducible admissible representation of O(2n, F ). Then there
exists a unique datum as in (i) such that σ ∼= L(·).

Remark 6.5. (1) In section 2, a minor variation on Propositions 6.3 and 6.4 is
used: Instead of having ρ1, . . . , ρk essentially tempered with ε(ρ1) < · · · <
ε(ρk) < 0 (resp., ε(ρ1) < · · · < ε(ρk−1) < −|ε(ρk)| < 0 for Proposition
6.3 (3), we take ρ1, . . . , ρk essentially square-integrable with ε(ρ1) ≤ · · · ≤
ε(ρk) < 0 (resp., ε(ρ1) ≤ · · · ≤ ε(ρk−1) ≤ −|ε(ρk)| < 0). This is justified
by the following: If δ1, . . . , δm are irreducible, square-integrable represen-
tations of GL(n1, F ), . . . GL(nm, F ), then δ1 × · · · × δm is an irreducible,
tempered representation. Further, any irreducible, tempered representation
of GL(n, F ) can be written this way.

(2) We also need multiplicity one in the Langlands classification, i.e., that
the Langlands subrepresentation appears with multiplicity one in the cor-
responding induced representation. We refer the reader to [B-W] in the
connected case and [B-J2] in the non-connected case. (We remark that for
O(2n, F ), multiplicity one may also be shown directly using the arguments
of Lemma 3.4, [Jan4].)
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[Mu] G. Muić, The unitary dual of p-adic G2, Duke Math. J., 90(1997), 465-493. MR
98k:22073

[M-R] F. Murnaghan and J. Repka, Reducibility of some induced representations of split clas-
sical p-adic groups, Comp. Math., 114(1998), 263-313. MR 99m:22021

[Re] M. Reeder, Hecke algebras and harmonic analysis on p-adic groups, Amer. J. Math.,
119(1997), 225-248. MR 99c:22025

[S-S] P. Schneider and U. Stuhler, Representation theory and sheaves on the Bruhat-Tits
building, Publ. Math. IHES, 85(1997), 97-191. MR 98m:22023

[Sh1] F. Shahidi, A proof of Langlands conjecture on Plancherel measures; complementary
series for p-adic groups, Ann. of Math., 132(1990), 273-330. MR 91m:11095

[Sh2] F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic
groups, Duke Math. J., 66(1992), 1-41. MR 93d:22034

[Sil1] A. Silberger, The Langlands quotient theorem for p-adic groups, Math. Ann., 236(1978),
95-104. MR 58:22413

[Sil2] A. Silberger, Introduction to Harmonic Analysis on Reductive p-adic Groups, Princeton
University Press, Princeton, 1979. MR 81m:22025

[Sil3] A. Silberger, Special representations of reductive p-adic groups are not integrable, Ann.
of Math., 111(1980), 571-587. MR 82k:22015
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