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Abstract. The representation parabolically induced from an ir-

reducible supercuspidal representation is considered. Irreducible

components of Jacquet modules with respect to induction in stages

are given. The results are used for consideration of generalized

Steinberg representations.

1. Introduction

Jacquet modules of parabolically induced representations can be
applied to some problems in representation theory, for example, the
question of reducibility of parabolically induced representations ([T3],
[J3]). They are also used for important work on description of dis-
crete series for classical p-adic groups ([MT], [J1], [J2]). These articles
concern the classical groups Sp(n, F ) and SO(2n + 1, F ). For calcu-
lating Jacquet modules of parabolically induced representations, they
are using a structure on representations of the groups Sp(n, F ) and
SO(2n + 1, F ), described in [T1].

The purpose of this article is to find new techniques for calculating
Jacquet modules for any connected p-adic group. Consequently, we
also describe the structure of parabolically induced representations,
their irreducible subrepresentations and irreducible subquotients.

Let G be a connected reductive p-adic group, P = MU a standard
parabolic subgroup of G and σ an irreducible supercuspidal represen-
tation of M . The geometric lemma ([BZ], [C], here Theorem 2.1) de-
scribes composition factors of

rM,G ◦ iG,M(σ),

where iG,M denotes functor of parabolic induction and rM,G the Jacquet
functor ([BZ]). After eliminating all zero components in rM,G ◦ iG,M (σ)
([BZ], [C], here Theorem 2.2), we prove some interesting facts about
the structure of iG,M (σ) and rM,G ◦ iG,M (σ) (Lemma 3.1 and Corollary
4.3).
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In Section 5, we consider an intermediate standard Levi subgroup N
such that M < N < G and describe how information about iN,M(σ)
and rM,N ◦ iN,M(σ) can be used in determining iG,M(σ) and rM,G ◦
iG,M(σ) (Theorem 5.1, Corollaries 5.2 and 5.3).

Using results of Sections 3, 4 and 5, choosing appropriate inter-
mediate Levi subgroups, we can deduce information about paraboli-
cally induced representations and their Jacquet modules. In Section
7, we carry this out for some examples of representations of Sp(m, F ),
SO(2m +1, F ) and SO(2m, F ). More precisely, we consider the repre-
sentation

να+nρ × · · · × ναρ ⋊ σ,

where ρ, σ are supercuspidal and ναρ⋊σ is reducible (see Section 7 for
notation). For α > 0, this representation is of length 2n+1 (Proposition
7.2) and it has the unique irreducible subrepresentation. This subrep-
resentation is square integrable and it is the unique square integrable
subquotient of να+nρ × · · · × ναρ ⋊ σ (Propositions 7.1 and 7.2). We
shall call it a generalized Steinberg representation (see Remark 7.1).

I would like to thank David Goldberg, Chris Jantzen, Freydoon
Shahidi, Marko Tadić and the referee for valuable suggestions. The
first part of this article was done during post-doctoral fellowship at
ICTP, Trieste, and I would like to thank them for their kind hospital-
ity and support.

2. Preliminaries

In this section, we introduce notation and recall some results from
[BZ] and [C] on Jacquet modules of parabolically induced representa-
tions.

Let F be a p-adic field and G the group of F -points of a reductive
algebraic group defined over F . Fix a minimal parabolic subgroup P0

and a maximal split torus A0 ⊂ P0. Let ∆ be the corresponding set of
simple roots. If Θ ⊂ ∆, then we write PΘ = MΘUΘ for the standard
parabolic subgroup determined by Θ.

Let P = MU be a standard parabolic subgroup of G. If σ is a
smooth representation of M , then we denote by iG,M(σ) the represen-
tation parabolically induced by σ. For a smooth representation π of G,
rM,G(π) is normalized Jacquet module of π with respect to M ([BZ]).

For a smooth finite length representation π we denote by s.s.(π)
the semi-simplified representation of π. It is the direct sum of the
irreducible components of π. Let ≤ denote the natural partial order
on the Grothendieck group of the category of all smooth finite length
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representations of G. For smooth finite length representations π1 and
π2, we write π1 ≤ π2 if s.s.(π1) ≤ s.s.(π2) in the Grothendieck group.

Let W be the Weyl group of G. For Θ ⊂ ∆, we denote by WΘ ⊂ W
the Weyl group of MΘ. Let Ω ⊂ ∆. Set ([C])

[WΘ\W/WΩ] = {w ∈ W |wα > 0, ∀α ∈ Ω, w−1β > 0, ∀β ∈ Θ}.

Theorem 2.1 (Geometric lemma). ([BZ], [C]) Let G be a connected
reductive p-adic group, P = PΘ = MU, Q = PΩ = NV parabolic
subgroups. Let σ be an admissible representation of M. Then rN,G ◦
iG,M(σ) has a composition series with factors

iN,N ′ ◦ w−1 ◦ rM ′,M(σ)

where M ′ = M ∩ w(N), N ′ = w−1(M) ∩ N and w ∈ [WΘ\W/WΩ] .

For Θ, Θ′ ⊆ ∆, we define

W (Θ, Θ′) = {w ∈ W | wΘ′ = Θ }.

If Θ = Θ′, then we set W (Θ) = W (Θ, Θ), and this is a subgroup of W.
Let Θ, Θ′ ⊆ Ω ⊆ ∆. Define

WΩ(Θ, Θ′) = {w ∈ WΩ | w Θ′ = Θ },
WΩ(Θ) = WΩ(Θ, Θ).

Theorem 2.2. ([BZ], [C]) Let σ be a supercuspidal representation of
M = MΘ. Then

s.s.(rM,G ◦ iG,M(σ)) =
∑

w∈W (Θ)

w−1σ =
∑

w∈W (Θ)

wσ.

Define

W (σ) = {w ∈ W (Θ) | wσ ∼= σ }.

We call σ regular if W (σ) = {1}. Otherwise, we say that σ is non-
regular.

Theorem 2.3. ([C], Proposition 6.4.1) Let σ be a regular supercuspi-
dal representation of M = MΘ. Then

rM,G ◦ iG,M (σ) ∼=
⊕

w∈W (Θ)

w−1σ =
⊕

w∈W (Θ)

w σ.
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3. Regular case

Lemma 3.1. Let σ be a regular irreducible supercuspidal representa-
tion of M . Then:

1. iG,M (σ) has a unique irreducible subrepresentation.
2. All irreducible subquotients of iG,M(σ) are mutually inequivalent.
3. For any w1, w2 ∈ W (Θ),

dimC HomG(iG,M(w1 σ), iG,M(w2 σ)) = 1.

4. Let p be the unique irreducible subrepresentation of iG,M (σ). Then

w σ ≤ rM,G(p) ⇔ p →֒ iG,M(w σ) ⇔ iG,M (w σ) ∼= iG,M (σ).

Remark 3.1. For σ a regular character, Lemma 3.1. is proved in [R].

Proof. 1. is well-known ([C]), 2. and 3. can be proved using Jacquet
modules, Frobenius reciprocity and Theorem 2.3.

4.) The first equivalence follows from Frobenius reciprocity and
Theorem 2.3. Now, suppose that p →֒ iG,M (w σ). By 3.), we have
a unique (up to a scalar) non-trivial intertwining operator ϕ between
iG,M(σ) and iG,M(w σ) . Then Ker ϕ →֒ iG,M(σ), Im ϕ →֒ iG,M (w σ).
If Ker ϕ 6= {0}, then p →֒ Ker ϕ, so, by 2.), Im ϕ = {0}. But this
contradicts the assumption that ϕ is non-trivial. We conclude that
Ker ϕ = {0}, so iG,M(w σ) ∼= iG,M(σ). �

Let P = MU be a standard parabolic subgroup of G. Denote by
P− the opposite parabolic subgroup of P , i.e., the unique parabolic
subgroup intersecting P in M . Let P̄ = M̄Ū be the unique standard
parabolic subgroup conjugate to P− ([C]); we can have either P̄ = P
or P̄ 6= P .

Proposition 3.2. Let P = MU be a standard parabolic subgroup of
G, and let σ be an irreducible supercuspidal regular representation of
M . Take w ∈ W such that w(P−) = P̄ . If q is an irreducible subrep-
resentation of iG,M (σ), then q̃ is a subrepresentation of iG,M̄(wσ̃).

(Here σ̃ denotes the contragredient representation of σ.)

In the proof of Proposition 3.2, we shall use non-standard parabolic
induction, in the notation of [BZ]: if P = MU is a parabolic subgroup
of G, and σ is a representation of M , we denote by iU,1(σ) the repre-
sentation parabolically induced by σ from P = MU . If P is a standard
parabolic subgroup, then iU,1(σ) = iG,M (σ).

The following proposition can be proved directly:
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Proposition 3.3. Let P = MU be a parabolic subgroup of G. Let
h : G → G be an automorphism of the topological group G. For
smooth representations σ of M and π of G, we have

ih(U ),1(h(σ)) ∼= h(iU,1(σ)),
rh(U ),1(h(π)) ∼= h(rU,1(π)).

(The representation h(π) is given by h(π)(g) = π(h−1(g)).

Corollary 3.4. Let P = MU be a parabolic subgroup of G, and w ∈
W . For smooth representations σ of M and π of G, we have

iw(U ),1(w σ) ∼= iU,1(σ),
rw(U ),1(π) ∼= w(rU,1(π)).

Proof of Proposition 3.2. If π is an admissible representation of G,
then we have from [C], Corollary 4.2.5.

r̃U,1(π) ∼= rU−,1(π̃).(**)

Let q →֒ iG,M(σ), q irreducible. Then

HomM (rM,G(q), σ) 6= {0},

so HomM (σ̃, ˜rM,G(q)) 6= {0} and HomM ( ˜rM,G(q), σ̃) 6= {0}, because

˜rM,G(q) is a direct sum of irreducible representations. Now, using (**),
Frobenius reciprocity and Corollary 3.4, we get

{0} 6= HomM( ˜rM,G(q), σ̃) ∼= HomM (rU−,1(q̃), σ̃)
∼= HomG(q̃, iU−,1(σ̃)) ∼= HomG(q̃, iG,M̄(wσ̃)).

�

4. Non-Regular case

Recall some notation from [C]. Denote by Z the center of G. Let
(π, V ) be an admissible representation of G, and ω a character of Z.
For each integer n > 1, we define

Vω,n = { v ∈ V | (π(z)− ω(z))nv = 0, z ∈ Z},

and also define

Vω,∞ =
⋃

n∈N

Vω,n,

Vω = Vω,1.

Each Vω,n is G-stable. The representation (π, V ) is called an ω-representation
if V = Vω. We will call (π, V ) an (ω, n)-representation if V = Vω,n.

Denote by JH(π) the set of equivalence classes of irreducible sub-
quotients of π.
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Proposition 4.1. Let (π, V ) be an admissible supercuspidal represen-
tation of G of finite length. Then there exists a direct sum decomposi-
tion

V =
⊕

ρ∈JH(π)

Vρ,

such that JH(Vρ) = {ρ}.

We will prove the proposition using a direct sum decomposition V =
⊕

Vω,∞ ([C], Proposition 2.1.9), but Philip Kutzko hinted that it can
also be proved using Bernstein decomposition ([B]).

Lemma 4.2. Let π be an admissible supercuspidal finite length (ω, n)-
representation. Then the following are equivalent:

1. ρ ∈ JH(π);
2. ρ →֒ Vω;
3. ρ →֒ π.

Proof. Obviously, 2. ⇔ 3. and 2., 3. ⇒ 1. The implication 1. ⇒ 2. is
given in [BZ], Theorem 2.4.(b). �

Proof of Proposition 4.1. According to [C], Proposition 2.1.9., we
may assume that (π, V ) is (ω, n)-representation for some central char-
acter ω and n ∈ N. Take ρ ∈ JH(π). Then, by Lemma 4.2, there
exists a subspace V1 ⊂ V such that (ρ, V1) is a subrepresentation of V .
If ρ ∈ JH(V/V1), then ρ →֒ V/V1. Hence, there exists a finite sequence

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ V

such that Vi/Vi−1
∼= ρ, i = 1, . . . , k, and ρ /∈ JH(V/Vk). Set Vk = Vρ.

We can do the same for any ρ ∈ JH(π). It follows V =
⊕

ρ∈JH(π) Vρ.
�

Corollary 4.3. Let σ be an irreducible supersupercuspidal representa-
tion of M . Then

1. There exists a direct sum decomposition

rM,G ◦ iG,M(σ) ∼=
⊕

w∈W (Θ)/W (σ)

Vw

such that s.s.(Vw) = k w σ, where k = card(W (σ)).
2. For all w ∈ W (Θ), wσ is a subrepresentation and a quotient of

rM,G ◦ iG,M (σ).
3. For all w1, w2 ∈ W (Θ),

dimC HomG(iG,M (w1σ), iG,M(w2σ)) ≥ 1.



INDUCTION AND JACQUET MODULES 7

4. Let π be an irreducible subquotient of iG,M (σ). For any w ∈ W (Θ),
we have

π →֒ iG,M(wσ) ⇔ wσ ≤ rM,G(π).

Proof. 1.), 2.) Follow from Proposition 4.1.

3.) Follows from 2.), since

HomG(iG,M(w1σ), iG,M(w2σ)) ∼= HomM (rM,G ◦ iG,M(w1σ), w2σ).

4.) The first implication follows from Frobenius reciprocity. The
second follows from Frobenius reciprocity and 1. �

Now, we consider the case when P = PΘ = MU is a maximal stan-
dard parabolic subgroup and σ is an irreducible supercuspidal repre-
sentation of M .

If P 6= P̄ , then W (Θ) = {1}. This implies that σ is regular and
iG,M(σ) irreducible (also, cf. [C], Theorem 7.1.4.).

If P = P̄ , then W (Θ) = {1, w} and s.s.(rM,G ◦ iG,M (σ)) = σ +
wσ. Suppose that wσ ∼= σ (hence, σ is non-regular). Then a simple
application of Frobenius reciprocity gives the following:

1. If iG,M (σ) is irreducible, then the sum rM,G ◦ iG,M(σ) = σ + σ is
not direct.

2. If iG,M(σ) is reducible, then it is of length 2 ([C], Cor.7.1.2.) and
rM,G ◦ iG,M (σ) = σ ⊕ σ.
(a) If iG,M (σ) is completely reducible, then it is the direct sum of

two inequivalent irreducible subrepresentations
iG,M (σ) = p1 ⊕ p2, p1 ≇ p2.

(b) If iG,M(σ) is reducible, but not semi-simple, then iG,M (σ) has
one irreducible subquotient and its multiplicity is two.

Proposition 4.4. Let P = PΘ = MU be a standard parabolic subgroup
of G, and let σ be an irreducible supercuspidal representation of M .
Suppose that W (σ) = {1, w} = WΩ(Θ) for some Ω, Θ ⊆ Ω ⊆ ∆. Let
Q = PΩ = NV .

1. If iN,M(σ) is completely reducible, then iN,M(σ) is the direct sum of
two inequivalent irreducible subrepresentations, iN,M(σ) = p1⊕p2,
and iG,M (σ) = iG,N(p1)⊕ iG,N (p2). Further, iG,N (pi), i = 1, 2, has
a unique irreducible subrepresentation qi, i = 1, 2, and q1 ≇ q2.

2. If iN,M(σ) is irreducible, then iG,M (σ) has a unique irreducible
subrepresentation p. Further, σ + σ →֒ rM,G(p), and this sum is
not direct.
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Proof. For 1., let qi, i = 1, 2 be a subrepresentation of iG,N(pi).
Then qi →֒ iG,M (σ) and Frobenius reciprocity give σ ≤ rM,G(qi). But
the multiplicity of σ in rM,G ◦ iG,M(σ) is two, so q1, q2 are the only two
irreducible subrepresentations of iG,M(σ). Since

dimC HomG(q1, iG,M(σ)) = dimC HomM (rM,G(q1), σ) = 1,

it follows that q1 ≇ q2. This proves 1.

For 2., let p be an irreducible subrepresentation of iG,M(σ). We have

HomG(p, iG,M (σ)) ∼= HomN (rN,G(p), iN,M(σ)).

Since iN,M(σ) is irreducible, it is a quotient of rN,G(p) and we have

2σ ≤ rM,N ◦ iN,M(σ) ≤ rM,G(p).

It follows that p is the unique irreducible subrepresentation of iG,M(σ).
�

5. Decomposition of Weyl group

Suppose that M and N are standard Levi subgroups of G, M < N ,
corresponding to Θ ⊆ Ω ⊆ ∆.

Theorem 5.1. Let σ be an irreducible supercuspidal representation of
M. Then

s.s.(rM,G ◦ iG,M(σ)) =
∑

w∈[WΩ\W/WΘ]
w(Θ)⊆Ω

∑

v∈WΩ(Θ,wΘ)

w−1v−1σ

=
∑

w∈[WΘ\W/WΩ]
w−1(Θ)⊆Ω

∑

v∈WΩ(wΘ,Θ)

wv σ

Proof.

s.s.(rM,G ◦ iG,M(σ)) = s.s.(rM,G ◦ iG,N ◦ iN,M(σ))

=
∑

w∈[WΩ\W/WΘ]

iM,M ′ ◦ w−1 ◦ rN ′,N ◦ iN,M(σ)

where M ′ = M ∩ w−1(N), N ′ = w(M) ∩ N . From Theorem 2.2, we
have

s.s.(rM,G ◦ iG,M(σ)) =
∑

w′∈W (Θ)

w′σ,

and this is a sum of supercuspidal representations. Hence, if

iM,M ′ ◦ w−1 ◦ rN ′,N ◦ iN,M(σ)
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is different from zero, it is a sum of supercuspidal representations,

iM,M ′ ◦ w−1 ◦ rN ′,N ◦ iN,M(σ) =
∑

w′∈S⊆W (Θ)

w′σ.

We conclude M = M ′ = M ∩ w−1(N), so M ⊂ w−1(N), w(M) ⊂ N .
It follows that w(Θ) ⊂ Ω, N ′ = w(M) ∩ N = w(M). Hence,

w−1 ◦ rN ′,N ◦ iN,M(σ) =
∑

w′∈S⊆W (Θ)

w′σ

rN ′,N ◦ iN,M(σ) =
∑

w′∈S⊆W (Θ)

ww′σ

∑

v∈[Ww(M)\WΩ/WM]

iN ′,N ′′ ◦ v−1 ◦ rM ′′,M(σ) =
∑

w′∈S⊆W (Θ)

ww′σ

where M ′′ = M ∩ v(N ′), N ′′ = v−1(M) ∩ N ′. This is again a sum of
supercuspidal representations, so

iN ′,N ′′ ◦ v−1 ◦ rM ′′,M (σ) 6= 0

implies N ′ = N ′′, M = M ′′. Now it follows from N ′′ = v−1(M) ∩ N ′

and N ′ = w(M) that N ′ = N ′′ = v−1(M) = w(M). �

Corollary 5.2. If w Θ ⊂ Ω implies w Θ = Θ, then

s.s.(rM,G ◦ iG,M(σ)) =
∑

w∈[WΩ\W/WΘ]∩W (Θ)

∑

v∈WΩ(Θ)

w−1v−1σ

=
∑

w∈[WΘ\W/WΩ]∩W (Θ)

∑

v∈WΩ(Θ)

wv σ.

�

Corollary 5.3. Suppose that w Θ ⊂ Ω implies w Θ = Θ. Let σ be an
irreducible supercuspidal representation of M . Let δ be a subquotient
of iN,M(σ). Suppose that

s.s.(rM,N(δ)) =
∑

v∈S⊆WΩ(Θ)

v σ.

Then

s.s.(rM,G ◦ iG,N (δ)) =
∑

w∈[WΘ\W/WΩ]∩W (Θ)

∑

v∈S

wv σ.

Proof. We have

s.s.(rM,G ◦ iG,N (δ)) =
∑

w∈[WΘ\W/WΩ]∩W (Θ)

w ◦ rN ′,N (δ),

where N ′ = M . �
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Remark 5.1. If Θ and Θ′ are subsets of ∆, they are called associates
if the set WΩ(Θ, Θ′) = {w ∈ WΩ | w Θ′ = Θ } is not empty. For any
Θ ⊆ ∆, denote by {Θ}∆ the set of its associates ([C]) and by {Θ}Ω the
set of its associates in Ω.

Let σ be an irreducible supercuspidal representation of M . Let δ be a
subquotient of iN,M(σ). Suppose that for every Θ′ ∈ {Θ}Ω we are given

s.s.(rMΘ′ ,N(δ)) =
∑

v∈S(Θ′)

v σ.

Then

s.s.(rM,G ◦ iG,N(δ)) =
∑

Θ′∈{Θ}Ω

∑

w∈[WΘ\W/WΩ]
w(Θ′)=Θ

∑

v∈S(Θ′)

wv σ.

6. Description of some subsets of Weyl groups for

classical groups

If we want to apply results of Section 5 to Levi subgroups M <
N < G corresponding to the subsets of the simple roots Θ ⊆ Ω ⊆ ∆,
we need to understand precisely W (Θ) and [WΘ \ W/WΩ] ∩ W (Θ). In
this section, we will describe these sets for certain Levi subgroups of
classical p-adic groups.

a) We consider the group

M = MΘ = GL(k, F ) × · · · × GL(k, F )
︸ ︷︷ ︸

n

×Sm,

where

Sm =







Sp(m, F ),

SO(2m + 1, F ),

SO(2m, F ), m ≥ 1 or m = 0, k − even.

M is isomorphic to a standard Levi subgroup of G = SK , K = kn+ m
([T1], [Ba2]). The description of the Weyl group for G can be found in
[T1], [Ba1]. A simple calculation gives

W (Θ) ∼= Sym(n) ⋉ {±1}n.

Here (ǫ1, . . . , ǫn) ∈ W (Θ), ǫi = ±1 for i = 1, . . . , n, corresponds to

(ǫ1, . . . ǫ1
︸ ︷︷ ︸

k

, . . . , ǫn, . . . ǫn
︸ ︷︷ ︸

k

, 1, . . . , 1
︸ ︷︷ ︸

m

) ∈ W,
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for Sp(m, F ), SO(2m + 1, F ) for every k, and for SO(2m, F ), k even,
and

(ǫ1, . . . ǫ1
︸ ︷︷ ︸

k

, . . . , ǫn, . . . ǫn
︸ ︷︷ ︸

k

, 1, . . . , 1
︸ ︷︷ ︸

(m−1)

,
n∏

i=1

ǫi) ∈ W,

for SO(2m, F ), k odd.

For an ordered partition (n1, . . . , nq = n) of n, denote by

Sh(n1,...,nq)

the set of all shuffles of sets

{1, . . . , n1}, {n1 + 1, . . . , n2}, . . . , {nq−1 + 1, . . . , nq}.

(Suppose that S1, S2, . . . , Sq are disjoint ordered sets. A shuffle of the
sets S1, S2, . . . , Sq is a permutation p of the set S = S1 ∪ S2 ∪ · · · ∪ Sq

which preserves the order on each of the sets Sk, k = 1, 2, . . . , q, i.e.,
if s1, s2 are contained in the same set Sk, then s1 < s2 implies p(s1) <
p(s2).)

For k ≤ l ≤ n, define a permutation z(k,l) with

z(k,l)(j) =







j, j < k;

k + l − j, k ≤ j ≤ l;

j, j > l.

If k > l, we define z(k,l) = id. For l ≤ n, set

Nl = GL(kl, F )× S(n−l)k+m,
M < Nl < G.

We have the following:

Lemma 6.1.

[WM \ W/WNl
] ∩ W (Θ) =

l⋃

i=0

Sh(l−i,l,n)z(l−i+1,l)(1l−i,−1i, 1n−l).

Proof. The simple roots are αi = ei − ei+1, when i < kn + m, and
αkn+m = ekn+m−1 + ekn+m ([T1], [Ba2]). The set Ω ⊂ ∆ corresponding
to N is Ω = ∆ \ {αlk}. Since

[WM \ W/WNl
] ∩ W (Θ) = [WΘ \ W/WΩ] ∩ W (Θ)

= {w ∈ W (Θ)|wα > 0, ∀α ∈ Ω},

w ∈ W (Θ) is an element of [WΘ \ W/WΩ] if and only if the following
condition is satisfied:

wαik > 0 for i = 1, 2, . . . , l − 1, l + 1, . . . , n.
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The positive roots are ej − el, j < l and ej + el. This gives the lemma.
�

b) Suppose that k is odd. Let

M = MΘ = GL(k, F ) × · · · × GL(k, F )
︸ ︷︷ ︸

n

be a standard Levi subgroup of G = SO(2nk, F ). Then

W (Θ) ∼= {±1}n−1 ⋊ Sym(n),

where {±1}n−1 = { (ǫ1, . . . , ǫn) |
∏

ǫi = 1 }.

For l ≤ n, set

Nl = GL(kl, F ) × SO(2(n − l)k, F ).

Let Ω ⊆ ∆ correspond to N .

If l = n, then w(Θ) ⊆ Ω implies w(Θ) = Θ. In other words, the set
{Θ}Ω of associates of Θ in Ω is equal to {Θ}.

If l < n, then {Θ}Ω = {Θ, s(Θ)}. Here s denotes the automorphism
of the root system which interchanges αkn−1 and αkn ([Ba1], [Ba2]).
We have

Ms(Θ) = sMΘs−1 = s(M),

where

s =







I
0 1
1 0

I







.

Lemma 6.2. 1. The set [WM \ W/WNl
] ∩ W (Θ) is equal to

l⋃

i=0
i even

Sh(l−i,l,n)z(l−i+1,l)(1l−i,−1i, 1n−l).

2. The set of all w ∈ [WM \ W/WNl
] such that w(s(Θ)) = Θ is equal

to

l⋃

i=0
i odd

Sh(l−i,l,n)z(l−i+1,l)(1l−i,−1i, 1n−l) s.
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7. Applications

We shall apply our results to study representations of classical p-adic
groups which we refer to as generalized Steinbergs (see Remark 7.1).

Recall some notation from [Z] and [T1]. For admissible representa-
tions ρ1, ρ2 of GL(k1, F ), GL(k2, F ) respectively, we define

ρ1 × ρ2 = iG,M (ρ1 ⊗ ρ2),

where M ∼= GL(k1, F ) × GL(k2, F ) is a standard Levi subgroup of
G = GL(k1 + k2, F ). Also, set

Sm =







Sp(m, F ),

SO(2m + 1, F ),

SO(2m, F ).

If ρ is an admissible representation of GL(k, F ) and σ is an admissible
representation of Sm, then we define

ρ ⋊ σ = iG,M (ρ ⊗ σ),

where M ∼= GL(k, F ) × Sm is a standard Levi subgroup of G = Sk+m

([T1], [Ba2]). We have

(ρ1 × ρ2) ⋊ σ = ρ1 ⋊ (ρ2 ⋊ σ).

Let ν denote |det|. Let ρ be an irreducible supercuspidal represen-
tation of GL(k, F ) and n a non-negative integer. The set [ρ, νnρ] =
{ρ, νρ, . . . , νnρ} is called a segment. We know from [Z] that the repre-
sentation νnρ×νn−1ρ×· · ·×ρ has a unique irreducible subrepresentation
δ([ρ, νnρ]) and

rM,G(δ([ρ, νnρ])) = νnρ ⊗ νn−1ρ ⊗ · · · ⊗ ρ.

The following proposition is similar to Proposition 3.1 in [T2], here
extended to the case of SO(2n, F ). Also, we allow α = 0.

Proposition 7.1. Let ρ be an irreducible unitarizable supercuspidal
representation of GL(k, F ) and let σ be an irreducible supercuspidal
representation of Sm. Let α ≥ 0. Suppose that ναρ ⋊ σ is reducible.
Let n be a non-negative integer. Then:

1. ρ ∼= ρ̃.
2. ν−αρ ⋊ σ is reducible. νβρ ⋊ σ is irreducible for any real number

β 6= ±α.
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3. If α > 0, then the representation να+nρ×· · ·×ναρ⋊σ contains a
unique irreducible subrepresentation, denote it by δ([ναρ, να+nρ], σ).
This subrepresentation is square-integrable. We have

rM,G (δ([ναρ, να+nρ], σ)) = να+nρ ⊗ · · · ⊗ ναρ ⊗ σ,

δ([ναρ, να+nρ], σ)∼ ∼= δ([ναρ, να+nρ], σ̃).

4. If α = 0, then the representation νnρ × · · · × ρ ⋊ σ contains two
inequivalent irreducible subrepresentations q1 and q2. For n > 0,
q1 and q2 are square integrable, while for n = 0 they are tempered
(but not square integrable). We have

rM,G(q1) = rM,G(q2) = νnρ ⊗ · · · ⊗ ρ ⊗ σ.

Note that we are not requiring α to be half-integral.
Proof. For m = 0 and k odd, the representation ναρ ⋊ 1 of Sk =

SO(2k, F ) is irreducible ([Sh], Prop.3.5). Thus, the assumption on
the reducibility of ναρ ⋊ σ excludes the case m = 0 and k odd for
SO(2m, F ), and we are in the situation described in the case a) of
Section 6.

1. follows from [T2], [Ba2], 2. follows from [S].

3. Let

τ = να+nρ ⊗ · · · ⊗ ναρ ⊗ σ.

Since τ is regular, it follows from Lemma 3.1 that iG,M (τ ) has a unique
irreducible subrepresentation. Set

Nn+1 = GL((n + 1)k, F ) × Sm,
Nn = GL(nk, F ) × Sk+m.

Let q →֒ ναρ ⋊ σ. Then rGL(k,F )×Sm
(q) = ναρ ⊗ σ. Let

q0 = δ([να+1ρ, να+nρ]) ⊗ q.

This is a representation of Nn, and rM,Nn(q0) = τ , iG,Nn(q0) →֒ iG,M(τ ).
On the other hand,

q1 = δ([ναρ, να+nρ])⊗ σ

is a representation of Nn+1, and rM,Nn+1(q1) = τ, iG,Nn+1(q1) →֒ iG,M(τ ).
Let δ = δ([ναρ, να+nρ], σ) be the unique irreducible subrepresentation
of iG,M (τ ). Then

δ →֒ iG,Nn(q0),
δ →֒ iG,Nn+1(q1),

rM,G(δ) ≤ rM,G ◦ iG,Nn(q0),
rM,G(δ) ≤ rM,G ◦ iG,Nn+1(q1).
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From Corollary 5.2 and Lemma 6.1, we have the following

rM,G ◦ iG,Nn(q0) =
n∑

i=0

Sh(n−i,n,n+1)z(n−i+1,n)(1n−i,−1i, 1) τ,

rM,G ◦ iG,Nn+1(q1) =

n+1∑

i=0

Sh(n−i+1,n+1)z(n−i+2,n+1)(1n+1−i,−1i) τ.

In the first sum, all terms contain the factor ναρ, but in the second
sum, we have ναρ only for i = 0. Since Sh(n+1,n+1) = {1}, we conclude
that the only common factor for rM,G ◦ iG,Nn(q0) and rM,G ◦ iG,Nn+1(q1)
is τ . Hence, rM,G(δ) = τ . The Casselman square integrability criterion
([C], [Ta2], [Ba2]) tells us that δ is square integrable.

Let wl be the longest element in W and wl,Θ the longest element
in WΘ ([C]). Take w = wlwl,Θ. Then w ∈ W (Θ), w(P ) = P−, and
w(ρ1⊗· · ·⊗ρk⊗σ) = ρ̃1⊗· · ·⊗ ρ̃k⊗σ. Now it follows from Proposition
3.2. that δ([ναρ, να+nρ], σ)∼ ∼= δ([ναρ, να+nρ], σ̃).

4. According to Proposition 4.4, νnρ × · · · × ρ ⋊ σ = iG,N (p1) ⊕
iG,N(p2), where p1 and p2 are two inequivalent subrepresentations of
νnρ ⊗ · · · νρ ⊗ (ρ ⋊ σ). Further, iG,N (pi), i = 1, 2 contains a unique
irreducible subrepresentation qi, i = 1, 2, and q1 ≇ q2. The proof that

rM,G(q1) = rM,G(q2) = νnρ ⊗ · · · ⊗ ρ ⊗ σ.

is by induction on n. The proof is similar to that of 3., applied to
the groups Nn and N1 = GL(k, F ) × Snk+m. We are using the fact
that νn−1ρ× · · · × ρ ⋊ σ has two inequivalent subrepresentations, with
Jacquet modules

νn−1ρ ⊗ · · · ⊗ ρ ⊗ σ,

which is assured by inductive assumption. �

Additional properties, similar to those for the Steinberg representa-
tion ([C], [BoW]), are given in the following proposition.

Proposition 7.2. Let ρ be an irreducible unitarizable supercuspidal
representation of GL(k, F ), σ an irreducible supercuspidal representa-
tion of Sm. Let α > 0. Suppose that ναρ ⋊ σ is reducible. Then:

1. να+nρ × · · · × ναρ ⋊ σ is a multiplicity one representation.
2. The length of να+nρ × · · · × ναρ ⋊ σ is 2n+1.
3. δ([ναρ, να+nρ], σ) is the unique square integrable subquotient of

να+nρ × · · · × ναρ ⋊ σ.

Proof. 1. follows from Lemma 3.1, because να+nρ⊗ · · · ⊗ ναρ⊗ σ is
regular.
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2. By induction on n. Let n ≥ 1. Set

N = Snk+m,

τ = να+n−1ρ ⊗ · · · ⊗ ναρ ⊗ σ.

Let q be an irreducible subquotient of να+n−1ρ× · · · × ναρ ⋊ σ. Write

rM ′,N (q) =
∑

w∈S

w τ.

Fix w0 ∈ S. We know from Lemma 3.1 that

w ∈ S ⇔ iN,M ′(w τ ) ∼= iN,M ′(w0τ ).

Now, we consider the representation να+nρ⋊q. According to Corollary
5.3 and Lemma 6.1, we have

rM,G(να+nρ ⋊ q) = (Sh(1,n+1) ∪ Sh(1,n+1)(−1, 1n))(να+nρ ⊗ rM ′,N (q)).

We consider the action of Sh(1,n+1) ∪Sh(1,n+1)(−1, 1n) on να+nρ⊗w0τ .

w0τ is the tensor product of a permutation of elements νǫ1(α+n−1)ρ, . . . , νǫnαρ,
where ǫi is 1 or −1, all tensored with σ. We will assume that ǫ1 = 1.
(The same basic argument works when ǫ1 = −1.) Hence,

w0τ ∼= νβ1ρ ⊗ · · · νβkρ ⊗ να+n−1ρ ⊗ νβk+1ρ ⊗ · · · νβn−1ρ ⊗ σ.

Now, we have

να+nρ ⋊ iN,M ′(w0τ )

= να+nρ × νβ1ρ × · · · × νβkρ × να+n−1ρ × νβk+1ρ × · · · × νβn−1ρ ⋊ σ
∼= νβ1ρ × να+nρ × · · · × νβkρ × να+n−1ρ × νβk+1ρ × · · · × νβn−1ρ ⋊ σ
...
∼= νβ1ρ × · · · × νβkρ × να+nρ × να+n−1ρ × νβk+1ρ × · · · × νβn−1ρ ⋊ σ

≇ νβ1ρ × · · · × νβkρ × να+n−1ρ × να+nρ × νβk+1ρ × · · · × νβn−1ρ ⋊ σ

The inequivalence follows from Lemma 3.1 for the regular represen-
tation να+nρ ⊗ · · · ⊗ ναρ ⊗ σ. We also need to use the fact that
να+nρ × να+n−1ρ is reducible, which follows from [Z]. Furthermore,

νβ1ρ × · · · × νβkρ × να+n−1ρ × να+nρ × νβk+1ρ × · · · × νβn−1ρ ⋊ σ
∼= νβ1ρ × · · · × νβkρ × να+n−1ρ × νβk+1ρ × να+nρ × · · · × νβn−1ρ ⋊ σ
...
∼= νβ1ρ × · · · × νβkρ × να+n−1ρ × νβk+1ρ × · · · × νβn−1ρ × να+n ⋊ σ
∼= νβ1ρ × · · · × νβkρ × να+n−1ρ × νβk+1ρ × · · · × νβn−1ρ × ν−α−nρ ⋊ σ
...
∼= ν−α−nρ × νβ1ρ × · · · × νβkρ × να+n−1ρ × νβk+1ρ × · · · × νβn−1ρ ⋊ σ.
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Lemma 3.1 tells us that (Sh(1,n+1) ∪ Sh(1,n+1)(−1, 1n))(να+nρ ⊗ w0τ )
belongs to Jacquet modules of two irreducible subquotients of να+nρ×
· · · × ναρ ⋊ σ, denote them by p1 and p2. Note that p1 and p2 are
subquotients of να+nρ ⋊ q. Further, for w ∈ S, we have

να+nρ ⋊ iN,M ′(w τ ) ∼= να+nρ ⋊ iN,M ′(w0τ )

ν−α−nρ ⋊ iN,M ′(w τ ) ∼= ν−α−nρ ⋊ iN,M ′(w0τ ),

so, using Lemma 3.1, we obtain

(Sh(1,n+1) ∪ Sh(1,n+1)(−1, 1n))(να+nρ ⊗ rM ′,N (q)) ⊆ rM,G(p1) + rM,G(p2).

It follows that να+nρ ⋊ q has exactly two irreducible subquotients, p1

and p2. By the inductive assumption, να+n−1ρ × · · · × ναρ ⋊ σ has 2n

irreducible subquotients. We conclude that the length of να+nρ×· · ·×
ναρ ⋊ σ is 2 · 2n = 2n+1.

3. Write

τ = να+nρ ⊗ · · · ⊗ ναρ ⊗ σ.

Let q be an irreducible subquotient of να+nρ × · · · × ναρ ⋊ σ, q 6=
δ([ναρ, να+nρ], σ). Take w ∈ W such that w τ ≤ rM,G(q). Then q →֒
iG,M(w τ ). We can write

w τ = νǫ1β1ρ ⊗ · · · ⊗ νǫn+1βn+1 ⊗ σ,

where ǫi = ±1 and (β1, . . . , βn+1) is a permutation of (α, α+1, . . . , α+
n). Suppose that there exists 1 ≤ k ≤ n + 1 such that ǫ1 = · · · =
ǫk−1 = 1, ǫk = −1. Then

iG,M (w τ )

= νβ1ρ × · · · × νβk−1ρ × ν−βkρ × νǫk+1βk+1ρ × · · · × νǫn+1βn+1ρ ⋊ σ
∼= ν−βkρ × νβ1ρ × · · · × νβk−1ρ × νǫk+1βk+1ρ × · · · × νǫn+1βn+1ρ ⋊ σ.

According to Frobenius reciprocity,

ν−βkρ ⊗ νβ1ρ ⊗ · · · ⊗ νβk−1ρ ⊗ νǫk+1βk+1ρ ⊗ · · · ⊗ νǫn+1βn+1ρ ⊗ σ ≤ rM,G(q),

so q is not square integrable.

Now, suppose that ǫ1 = · · · = ǫn+1 = 1. Since q 6= δ([ναρ, να+nρ], σ),
we have w τ 6= να+nρ ⊗ · · · ⊗ ναρ ⊗ σ. There exists k ∈ {1, . . . , n + 1}
such that βk 6= α + n − k + 1, βk+1 = α + n − k, . . . , βn+1 = α. Then
βk 6= α, so νβkρ ⋊ σ is irreducible and νβkρ ⋊ σ ∼= ν−βkρ ⋊ σ. Also,
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νβkρ × νβlρ ∼= νβlρ × νβkρ for every l = k + 1, . . . , n + 1. We have

iG,M (w τ )

= νβ1ρ × · · · × νβk−1ρ × νβkρ × νβk+1ρ × · · · × νβn+1ρ ⋊ σ
∼= νβ1ρ × · · · × νβk−1ρ × νβk+1ρ × · · · × νβn+1ρ × νβkρ ⋊ σ
∼= νβ1ρ × · · · × νβk−1ρ × νβk+1ρ × · · · × νβn+1ρ × ν−βkρ ⋊ σ
∼= ν−βkρ × νβ1ρ × · · · × νβk−1ρ × νβk+1ρ × · · · × νβn+1ρ ⋊ σ.

It follows

ν−βkρ ⊗ νβ1ρ ⊗ · · · ⊗ νβk−1ρ ⊗ νβk+1ρ ⊗ · · · ⊗ νβn+1ρ ⊗ σ ≤ rM,G(q)

so q is not square integrable. �

Proposition 7.3. Let ρ be an irreducible supercuspidal representation
of GL(k, F ), k odd. Suppose that ρ ∼= ρ̃. Let n ≥ 1. Then the repre-
sentation

νnρ × · · · × νρ × ρ ⋊ 1

of SO(2(n + 1)k, F ) contains a unique irreducible subrepresentation,
denote it by δ([ρ, νnρ], 1). This representation is square integrable. We
have

rM,G(δ([ρ, νnρ], 1)) = νnρ ⊗ · · · ⊗ ρ ⊗ 1.

Note that for k > 1, ρ ⋊ 1 is irreducible, tempered, but not square
integrable. If ρ is the trivial representation of GL(1, F ), then ρ ⋊ 1 is
the trivial representation of SO(2, F ) ∼= F× which is square integrable.

Proof. Set

τ = νnρ ⊗ · · · ⊗ ρ ⊗ 1.

The representation τ is regular, so iG,M(τ ) contains a unique irreducible
subrepresentation.

First, we will consider the case n = 1. Then τ = νρ ⊗ ρ ⊗ 1. Write

νρ × ρ = p1 + p2,

where p1 (resp., p2) is the unique irreducible subrepresentation (resp.,
quotient) of νρ × ρ. If we set M = GL(k, F ) × GL(k, F ), N =
GL(2k, F ), then

rM,N(p1) = νρ ⊗ ρ, rM,N(p2) = ρ ⊗ νρ.

We have

s.s.(iG,M(τ )) = iG,N (p1) + iG,N (p2),

rM,G ◦ iG,N (p1) = νρ ⊗ ρ ⊗ 1 + ρ ⊗ ν−1ρ ⊗ 1,

rM,G ◦ iG,N (p1) = ρ ⊗ νρ ⊗ 1 + ν−1ρ ⊗ ρ ⊗ 1.
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We want to prove that iG,N (p1) and iG,N (p2) are reducible. We will
show it using the Langlands classification for SO(2m, F ) in the sub-
representational setting ([J4]).

Denote by δ(ν
1
2 ρ×ν− 1

2 ρ) the unique irreducible subrepresentation of

ν
1
2 ρ×ν− 1

2 ρ. Then δ(ν
1
2 ρ×ν− 1

2 ρ) is square integrable ([Z]). We consider
the standard parabolic subgroup with Levi factor sNs−1 = s(N) (s as

in Section 6, b)). Then s(δ(ν
1
2 ρ × ν− 1

2 ρ) ⊗ 1) is a representation of

s(N) and iG,s(N)s(ν
− 1

2 δ(ν
1
2 ρ× ν− 1

2 ρ)⊗ 1) contains a unique Langlands
subrepresentation, denote it by

L(iG,s(N)s(ν
− 1

2 δ(ν
1
2 ρ × ν− 1

2 ρ) ⊗ 1)).

We have

rM,G ◦ iG,s(N)s(ν
− 1

2 δ(ν
1
2 ρ × ν− 1

2 ρ) ⊗ 1) = ρ ⊗ νρ ⊗ 1 + ν−1ρ ⊗ ρ ⊗ 1.

By the Langlands classification and regularity, ν−1ρ ⊗ ρ ⊗ 1 must
have been contributed by the Jacquet module of L(ν−1ρ × ρ ⋊ 1).

It follows that iG,s(N)s(ν
− 1

2 δ(ν
1
2 ρ × ν− 1

2 ρ) ⊗ 1) has two components,

L(iG,s(N)s(ν
− 1

2 δ(ν
1
2 ρ × ν− 1

2 ρ) ⊗ 1)) and L(ν−1ρ × ρ ⋊ 1). This implies
that iG,N (p2) is reducible.

To show that iG,N (p1) is reducible, we will apply the Aubert invo-
lution [A] (denote it by ˆ ). Since p̂1 = p2 and the Aubert involution
commutes with parabolic induction, we have

iG,N (p1) ∼= iG,N (p̂2) ∼= ̂iG,N (p2).

Hence, iG,N (p1) is reducible. It has two irreducible components and for
the unique irreducible subrepresentation δ([ρ, νρ], 1), we have

rM,G(δ([ρ, νρ], 1)) = νρ ⊗ ρ ⊗ 1.

According to [Ba2], we have the following

s(νρ × ρ ⋊ 1) ∼= νρ × s(ρ ⋊ 1) ∼= νρ × ρ ⋊ 1.

Also, for any irreducible smooth representation π of SO(2m, F ),

π is square integrable ⇔ s(π) is square integrable.

Since δ([ρ, νρ], 1) is the unique square integrable subquotient of νρ ×
ρ ⋊ 1, it follows s(δ([ρ, νρ], 1)) ∼= δ([ρ, νρ], 1). Using Proposition 3.3,
we obtain

rs(M ),G(δ([ρ, νρ], 1)) ∼= rs(M ),Gs(δ([ρ, νρ], 1)) ∼= s(rM,G(δ([ρ, νρ], 1)))
= s(νρ ⊗ ρ ⊗ 1).
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Now, suppose that n ≥ 2. The proof is similar to that of Proposition
7.1, 3. Let

N = GL((n − 1)k, F ) × SO(4k, F ).

We have

rM,N(δ([ν2ρ, νnρ]) ⊗ δ([ρ, νρ], 1)) = νnρ ⊗ · · · ⊗ ρ ⊗ 1 = τ,

rs(M ),N(δ([ν2ρ, νnρ]) ⊗ δ([ρ, νρ], 1)) = s(τ ).

Using Remark 5.1 and Lemma 6.2, we obtain

rM,G(δ([ν2ρ, νnρ]) ⋊ δ([ρ, νρ], 1)) =

=

n−1∑

i=0

Sh(n−i−1,n−1,n+1)z(n−i,n−1)(1n−i−1,−1i, 12) τ.

On the other hand,

rM,G(δ([ρ, νnρ]) ⋊ 1) =
n−1∑

i=0
i even

Sh(n−i+1,n+1)z(n−i+2,n+1)(1n−i+1,−1i) τ.

The only comon factor for these two sums is τ . Since both representa-
tions have δ([ρ, νnρ], 1) as a subrepresentation, we conclude that

rM,G(δ([ρ, νnρ], 1)) = τ.

�

Remark 7.1. Let G be a connected reductive p-adic group, P = MU
a standard parabolic subgroup. Let σ be an irreducible supercuspidal
regular representation of G. If iG,M(σ) has a square integrable subquo-
tient p such that rM,G(p) is irreducible, we call p a generalized Steinberg
representation. For G = Sp(n, F ), SO(2n + 1, F ) and SO(2n, F ), all
generalized Steinberg representations are described by Proposition 7.1,
3. (δ([ναρ, να+nρ], σ)) and Proposition 7.3 (δ([ρ, νnρ], 1)).
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des représentations lisses de longueur finie d’un groupe réductif
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