SELF-DUALITY IN THE CASE OF $SO(2n, F)$

DUBRAVKA BAN

Abstract. The parabolically induced representations of special even-orthogonal groups over p-adic field are considered. The main result is a theorem on self-duality, which gives a condition on initial representations, if induced representation has a square integrable subquotient.

1. Introduction

The problem of construction of noncuspidal irreducible square integrable representations of classical p -adic groups was studied by M.Tadić in [T3]. He showed ([T3], Lemma 4.1) that among irreducible cuspidal representations of general linear groups only the self-dual play a role in the construction of irreducible noncuspidal square integrable representations of symplectic and odd-orthogonal groups.

In this paper, we show the same property for groups $SO(2n, F)$ (Theorem 6.1). In the second section, we review some notation and results from the representation theory of general linear groups. In the third section, we describe standard parabolics of $SO(2n, F)$. Some properties of induced representations of $SO(2n, F)$ are given in the fourth section. The fifth section exposes the Casselman square integrability criterion for $SO(2n, F)$. In the sixth section, a theorem on self-duality is stated and proved.

By closing the introduction, I would like to thank Marko Tadić, who initiated this paper and helped its realization. I also thank Goran Muić for his helpful comments regarding this paper.

¹⁹⁹¹ Mathematics Subject Classification. 20 G 05, 22 E 50.

Key words and phrases. self-duality, parabolic induction, representations, evenorthogonal groups.

2 DUBRAVKA BAN

2. Preliminaries

Fix a locally compact nonarchimedean field F of characteristic different from 2. Let G be a group of F -points of a connected reductive F -split group. Suppose that G is reductive and split.

Fix a minimal parabolic subgroup $P_0 \subset G$ and a maximal split torus $A_0 \subset P_0$.

Let P be a parabolic subgroup, containing P_0 . We call such a group a standard parabolic subgroup. Let U be the unipotent radical of P . Then, by $[BZ]$, there exists a unique Levi subgroup M in P containing A_0 .

Let P be a standard parabolic subgroup of G , with Levi decomposition $P = MU$. For a smooth representation σ of M, we denote by $i_{G,M}(\sigma)$ the parabolically induced representation of G by σ from P, and for a smooth representation π of G, we denote by $r_{M,G}(\pi)$ the normalised Jacquet module of π with respect to P.

For a smooth finite length representation π we denote by $s.s.(\pi)$ the semi-simplified representation of π . The equivalence $s.s.(\pi_1) \cong s.s.(\pi_2)$ means that π_1 and π_2 have the same irreducible composition factors with the same multiplicities, and we write $\pi_1 = \pi_2$. We write $\pi_1 \cong \pi_2$ if we mean that π_1 and π_2 are actually equivalent.

Now we shall recall some results from [BZ] and [Z] of the representation theory of general linear groups.

For the group $GL(n, F)$, we fix the minimal parabolic subgroup which consists of all upper triangular matrices in $GL(n, F)$. The standard parabolic subgroups of $GL(n, F)$ can be parametrized by ordered partitions of n: for $\alpha = (n_1, \ldots, n_k)$ there exists a standard parabolic subgroup (denote it in this section by P_{α}) of $GL(n, F)$ whose Levi factor M_{α} is naturally isomorphic to $GL(n_1, F) \times \cdots \times GL(n_k, F)$.

Let π_1, π_2 be admissible representation of $GL(n_1, F), GL(n_2, F)$ resp., $n_1 + n_2 = n$. Define

$$
\pi_1 \times \pi_2 = i_{GL(n,F),M(n_1+n_2)}(\pi_1 \otimes \pi_2).
$$

Denote $\nu = |\text{det}|$. We have the following criterion for irreducibility $([Z],$ Proposition1.11):

Proposition 2.1. Let π_i , $i = 1, 2$, be irreducible cuspidal representation of $GL(n_i, F)$.

- 1. If $\pi_1 \not\cong \nu \pi_2$ and $\pi_2 \not\cong \nu \pi_1$ (in particular if $n_1 \neq n_2$), then $\pi_1 \times \pi_2$ is irreducible.
- 2. Suppose that $n_1 = n_2$ and either $\pi_1 \cong \nu \pi_2$ or $\pi_2 \cong \nu \pi_1$. Then the representation $\pi_1 \times \pi_2$ has length 2.

3. PARABOLIC INDUCTION FOR $SO(2n, F)$

The special orthogonal group $SO(2n, F)$, $n \geq 1$, is the group

$$
SO(2n, F) = \{ X \in SL(2n, F) \mid \ ^{\tau} X X = I_{2n} \}.
$$

Here τX denotes the transposed matrix of X with respect to the second diagonal. For $n = 1$ we get

$$
SO(2,F) = \left\{ \begin{bmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{bmatrix} \middle| \lambda \in F^{\times} \right\} \cong F^{\times}.
$$

 $SO(0, F)$ is defined to be the trivial group.

Denote by A_0 the maximal split torus in $SO(2n, F)$ which consists of all diagonal matrices in $SO(2n, F)$. Hence,

$$
A_0 = \left\{ diag(x_1, \ldots, x_n, x_n^{-1}, \ldots, x_1^{-1}) \middle| x_i \in F^\times \right\} \cong (F^\times)^n.
$$

Fix the minimal parabolic subgroup P_0 which consists of all upper triangular matrices in $SO(2n, F)$.

The root system is of type D_n ; the simple roots are

$$
\alpha_i = e_i - e_{i+1}, \quad \text{for } 1 \le i \le n-1,
$$

$$
\alpha_n = e_{n-1} + e_n.
$$

The set of simple roots is denoted by Δ .

Let

$$
s = \begin{bmatrix} I & & & \\ & 0 & 1 & \\ & & 1 & 0 \\ & & & I \end{bmatrix} \in O(2n, F).
$$

We use the same letter s to denote the authomorphism of $SO(2n, F)$ defined by $s(g) = sgs^{-1}$.

Let $\theta = \Delta \setminus \{\alpha_i\}, i \in \{1, ..., n\}$, and let $P_\theta = M_\theta U_\theta$ be the maximal parabolic subgroup determined by θ .

If $i \neq n - 1$, then

$$
M_{\theta} = \left\{ diag(g, h, \ ^{\tau} g^{-1}) \mid g \in GL(i, F), \ h \in SO(2(n - i), F) \right\}.
$$

In this case, we denote M_{θ} by $M_{(i)}$, and we have

$$
M_{(i)} \cong GL(i, F) \times SO(2(n-i), F).
$$

If $i = n - 1$, then

$$
M_{\theta} = s(M_{(n)}).
$$

Now let $\theta = \Delta \setminus {\alpha_{n-1}, \alpha_n}$. Then $M_{\theta} = \{diag(g, h, \tau g^{-1}) \mid g \in GL(n-1, F), h \in SO(2, F) \cong GL(1, F)\},\$ so

$$
M_{\theta} \cong GL(n-1, F) \times SO(2, F),
$$

\n
$$
M_{\theta} \cong GL(n-1, F) \times GL(1, F),
$$

and we denote M_{θ} by $M_{(n-1)}$ or by $M_{(n-1,1)}$.

We shall now describe the set of standard parabolic subgroups of $SO(2n, F)$. Let $\alpha = (n_1, ..., n_k)$ be an ordered partition of non-negative integer $m \leq n$. Then there exists a standard parabolic subgroup, denote it by $P_{\alpha} = M_{\alpha} U_{\alpha}$, such that

$$
M_{\alpha} = \left\{ diag(g_1, ..., g_k, h, \, ^{\tau}g_k^{-1}, ..., \, ^{\tau}g_1^{-1}) \mid g_i \in GL(n_i, F), \ h \in SO(2(n-m), F) \right\}.
$$

Hence

Hence,

$$
M_{\alpha} \cong GL(n_1, F) \times GL(n_2, F) \times \cdots \times GL(n_k, F) \times SO(2(n-m), F).
$$

Mention that if $n_1 + \cdots + n_k = n - 1$, then

 $M = \left\{ diag(g_1, ..., g_k, h, \ ^{\tau} g_k^{-1} \right\}$ $\mathcal{F}_k^{-1}, \ldots, \tau_{g_1^{-1}}$ | $g_i \in GL(n_i, F), \ h \in SO(2, F) \cong GL(1, F)$, so we may consider

$$
M \cong GL(n_1, F) \times GL(n_2, F) \times \cdots \times GL(n_k, F) \times SO(2, F),
$$

or

$$
M \cong GL(n_1, F) \times GL(n_2, F) \times \cdots \times GL(n_k, F) \times GL(1, F).
$$

Hence, we can assign

$$
M \longmapsto \alpha = (n_1, ..., n_k),
$$

or

$$
M \longmapsto \alpha' = (n_1, ..., n_k, 1).
$$

Besides the subgroups of type $P_{\alpha} = M_{\alpha} U_{\alpha}$, there is also another type of standard parabolic subgroups. They can be described as

$$
M = s(M'),
$$

where $M' = M_{\alpha}$, for some $\alpha = (n_1, ..., n_k), n_1 + \cdots + n_k = n$.

Now, take smooth finite length representations π of $GL(n, F)$ and σ of $SO(2m, F)$. Let $P_{(n)} = M_{(n)}U_{(n)}$ be a standard parabolic subgroup of $G = SO(2(m+n), F)$. Hence, $M_{(n)} \cong GL(n, F) \times SO(2m, F)$, so $\pi \otimes \sigma$ can be taken as a representation of $M_{(n)}$. Define

$$
\pi\rtimes\sigma=i_{M_{(n)},G}(\pi\otimes\sigma).
$$

Note that in the case $G = SO(2, F)$, the induction does nothing, since

$$
M_{(0)} = M_{(1)} = SO(2, F) \cong GL(1, F),
$$

and for a smooth representation π of $GL(1, F)$, we have

 $\pi \rtimes 1 = \pi$.

It follows from [BZ], Prop.2.3, that for smooth representations π_1 of $GL(n_1, F)$, π_2 of $GL(n_2, F)$ and σ of $SO(2m, F)$ we have

$$
\pi_1 \rtimes (\pi_2 \rtimes \sigma) \cong (\pi_1 \times \pi_2) \rtimes \sigma.
$$

Let σ be a finite length smooth representation of $SO(2n, F)$. Let $\alpha =$ $(n_1, ..., n_k)$ be an ordered partition of a non-negative integer $m \leq n$. Define

$$
s_{\alpha}(\sigma) = r_{M_{\alpha},SO(2n,F)}(\sigma).
$$

4. Some properties of parabolically induced REPRESENTATIONS OF $SO(2n, F)$

Let $G = SO(2n, F)$. For $m < n$, let $P = P(m)$ be the standard parabolic subgroup with Levi factor $M \cong GL(m, F) \times SO(2(n-m), F)$. Then

$$
s(P) = P, \quad s(M) = M, \quad s(U) = U.
$$

The following lemma can be proved directly:

Lemma 4.1. For a smooth finite length representation π of $GL(m, F)$ and a smooth finite length representation σ of $SO(2(n-m), F)$, $m < n$, we have

$$
s(\pi \rtimes \sigma) \cong \pi \rtimes s(\sigma).
$$

Proposition 4.2. Let π be a smooth finite length representation of $GL(m, F)$ and σ be a smooth finite length representation of $SO(2(n (m), F$). Then

$$
\tilde{\pi} \rtimes \sigma = s^m(\pi \rtimes \sigma).
$$

Particularly,

1. If m is even, then

$$
\tilde{\pi}\rtimes\sigma=\pi\rtimes\sigma;
$$

2. If $m < n$ is odd, then

$$
\tilde{\pi} \rtimes \sigma = \pi \rtimes s(\sigma);
$$

3. If $m = n$ is odd, then

$$
\tilde{\pi} \rtimes 1 = s(\pi \rtimes 1).
$$

(Here $\tilde{\pi}$ denotes contragredient representation of π .) Proof. Denote

$$
j = s^n \left[\begin{array}{c} 1 \\ \cdot \\ \cdot \\ 1 \end{array} \right] \in SO(2n, F).
$$

Conjugation with j gives

$$
j(\pi \otimes \sigma) \cong s^m({}^t\pi^{-1} \otimes \sigma).
$$

Since $j(M) = s^m(M) = s^m(M)$, the groups $j(P)$ and $s^m(P)$ are associated, so we have by [BDK]

$$
\pi \rtimes \sigma = j(\pi \rtimes \sigma) = s^m(\tilde{\pi} \rtimes \sigma).
$$

The following lemma is well-known.

Lemma 4.3. Let ρ be an irreducible cuspidal unitary representation of $GL(m, F)$ and let σ be an irreducible cuspidal representation of $SO(2l, F), l \neq 1$. Take $\alpha \in \mathbb{R}$. If $(\nu^{\alpha}\rho) \rtimes \sigma$ reduces, then $\rho \cong \tilde{\rho}$ and $\sigma \cong s^m(\sigma)$.

Proof. Suppose first that $\alpha = 0$. The Frobenius reciprocity for $\rho \rtimes \sigma$ and $\rho \otimes \sigma$ gives

$$
Hom_G(\rho \rtimes \sigma, \rho \rtimes \sigma) \cong Hom_M(r_{M,G} \circ i_{G,M}(\rho \otimes \sigma), \rho \otimes \sigma).
$$

Now we have from the Geometric lemma [BZ]

$$
s.s.(r_{M,G} \circ i_{G,M}(\rho \otimes \sigma)) = \begin{cases} \rho \otimes \sigma + \tilde{\rho} \otimes s^m(\sigma), & \text{for } m < n \text{ or } m \text{ even,} \\ \rho \otimes 1, & \text{for } m = n \text{ odd.} \end{cases}
$$

If $\rho \rtimes \sigma$ is reducible, then $\dim_{\mathbb{C}} Hom_G(\rho \rtimes \sigma, \rho \rtimes \sigma) > 1$. It follows $\rho \stackrel{\cdot}{\cong} \tilde{\rho}, \sigma \cong s^m(\sigma).$

Now, suppose that $\alpha \neq 0$ and that $(\nu^{\alpha} \rho) \rtimes \sigma$ is reducible. It follows from Proposition 7.1.3. [C] that $(\nu^{\alpha}\rho) \rtimes \sigma$ has a square integrable subquotient. Therefore, $(\nu^{\alpha}\rho) \rtimes \sigma$ and $(\nu^{-\alpha}\rho) \rtimes \sigma$ have a common subquotient, so we get $\nu^{\alpha} \rho \otimes \sigma \cong \nu^{-\alpha} \rho \otimes \sigma$ or $\nu^{\alpha} \rho \otimes \sigma \cong \nu^{\alpha} \tilde{\rho} \otimes s^m(\sigma)$. The first equivalence implies $\alpha = 0$. Hence, we have $\nu^{\alpha} \rho \otimes \sigma \cong \nu^{\alpha} \tilde{\rho} \otimes s^{m}(\sigma)$. It follows $\rho \cong \tilde{\rho}, \sigma \cong s^m(\sigma)$. $^{m}(\sigma)$.

5. SQUARE INTEGRABILITY CRITERIA FOR $SO(2n, F)$

We shall state the criterion that follows from the Casselman square integrability criterion ([C], Theorem 6.5.1), and it is analogous to those from [T3] for $GSp(n, F)$.

Define

$$
\beta_i = (\underbrace{1, \dots, 1}_{i \text{ times}}, 0, \dots, 0) \in \mathbb{R}^n, \quad i \leq n - 2,
$$

$$
\beta_{n-1} = (1, \dots, 1, -1) \in \mathbb{R}^n,
$$

$$
\beta_n = (1, \dots, 1, 1) \in \mathbb{R}^n.
$$

Let π be an irreducible smooth representation of $G = SO(2n, F)$. Let $P = MU$ be a standard parabolic subgroup, minimal among all standard parabolic subgroups which satisfy

$$
r_{M,G}(\pi)\neq 0.
$$

Let ρ be an irreducible subqotient of $r_{M,G}(\pi)$.

If $P = P_{\alpha}$, where $\alpha = (n_1, \dots, n_k)$ is a partition of $m \leq n$, then

$$
\rho = \rho_1 \otimes \cdots \otimes \rho_k \otimes \sigma,
$$

where ρ_i are irreducible cuspidal representations of $GL(n_i, F)$, and σ is an irreducible cuspidal representation of $SO(2(n-m), F)$. If P is not of that type, then

$$
\rho = s(\rho_1 \otimes \cdots \otimes \rho_{k-1} \otimes \rho_k \otimes 1) = \rho_1 \otimes \cdots \otimes \rho_{k-1} \otimes s(\rho_k \otimes 1),
$$

where ρ_i are irreducible cuspidal representations of $GL(n_i, F)$.

We have $\rho_i = \nu^{e(\rho_i)} \rho_i^u$, where $e(\rho_i) \in \mathbb{R}$ and ρ_i^u is unitarizable. Define

$$
e_*(\rho) = \underbrace{(e(\rho_1), \ldots, e(\rho_1))}_{n_1 \text{ times}}, \ldots, \underbrace{e(\rho_k), \ldots, e(\rho_k)}_{n_k \text{ times}}, \underbrace{0, \ldots, 0}_{n-m \text{ times}}).
$$

(This definition concerns $\rho = \rho_1 \otimes \cdots \otimes \rho_k \otimes \sigma$ as well as $\rho = s(\rho_1 \otimes \cdots \otimes \rho_k \otimes \sigma)$ $\cdots \otimes \rho_k \otimes 1).$

If π is square integrable, then

$$
(e_*(\rho), \beta_{n_1}) > 0,
$$

\n
$$
(e_*(\rho), \beta_{n_1+n_2}) > 0,
$$

\n
$$
\vdots
$$

\n
$$
(e_*(\rho), \beta_{m-n_k}) > 0,
$$

\n
$$
(e_*(\rho), \beta_m) > 0.
$$

(Here $($,) denotes the standard inner product on \mathbb{R}^n .)

Conversely, if all above inequalities hold for any α and σ as above, then π is square integrable.

The criteria implies

 π is square integrable $\Leftrightarrow s(\pi)$ is square integrable,

but this equivalence can also be proved easily directly from the definition of square integrability.

6. A theorem on self-duality

Theorem 6.1. Suppose that $\rho_1, \rho_2, \ldots, \rho_k$ are irreducible cuspidal representations of $GL(n_1, F), \ldots, GL(n_k, F)$, resp., and σ is an irreducible cuspidal representation of $SO(2l, F), l \neq 1$. If $\rho_1 \times \cdots \times \rho_k \times \sigma$ contains a square integrable subquotient, then $\rho_i^u \cong (\rho_i^u)^\sim$, for any $i = 1, 2, \ldots, k$.

Proof. The proof paralels that used in chapter 4 of [T3]. Set $n_1 + \cdots + n_k = m$, $m + l = n$. Denote

$$
n_1 + \cdots + n_k = m, \, m + i = n.
$$
 Denote

$$
G = SO(2n, F),
$$

\n
$$
M = M_{(n_1,...,n_k)},
$$

\n
$$
\rho = \rho_1 \otimes \cdots \otimes \rho_k \otimes \sigma.
$$

Then

$$
\rho_1 \times \cdots \times \rho_k \times \sigma = i_{G,M}(\rho).
$$

Let π be an irreducible square integrable subquotient of $i_{G,M}(\rho)$. First we shall prove the lemma under the assumption that π is a subrepresentation of $i_{G,M}(\rho)$, or, equivalently, that ρ is a quotient of $r_{M,G}(\pi)$.

Fix any $i_0 \in \{1, \ldots, k\}$. Set

$$
Y_{i_0}^0 = \{i \in \{1, \dots, k\} \mid \exists \alpha \in \mathbb{Z} \text{ such that } \rho_{i_0} \cong \nu^{\alpha} \rho_i\},
$$

\n
$$
Y_{i_0}^1 = \{i \in \{1, \dots, k\} \mid \exists \alpha \in \mathbb{Z} \text{ such that } \tilde{\rho}_{i_0} \cong \nu^{\alpha} \rho_i\},
$$

\n
$$
Y_{i_0}^c = Y_{i_0}^0 \cup Y_{i_0}^1,
$$

\n
$$
Y_{i_0}^c = \{1, \dots, k\} \backslash Y_{i_0}.
$$

Suppose that $\rho_{i_0}^u \not\cong (\rho_{i_0}^u)^\sim$. It follows from Proposition 2.1 that for any $j_0, j'_0 \in Y^0_{i_0}, j_1, j'_1 \in Y^1_{i_0}$ and $j_c \in Y^c_{i_0}$ we have

$$
\rho_{j_0} \times \tilde{\rho}_{j'_0} \cong \tilde{\rho}_{j'_0} \times \rho_{j_0}, \quad \rho_{j_1} \times \tilde{\rho}_{j'_1} \cong \tilde{\rho}_{j'_1} \times \rho_{j_1}, \n\rho_{j_0} \times \rho_{j_1} \cong \rho_{j_1} \times \rho_{j_0}, \quad \tilde{\rho}_{j_0} \times \tilde{\rho}_{j_1} \cong \tilde{\rho}_{j_1} \times \tilde{\rho}_{j_0}, \n\rho_{j_0} \times \rho_{j_c} \cong \rho_{j_c} \times \rho_{j_0}, \quad \tilde{\rho}_{j_0} \times \rho_{j_c} \cong \rho_{j_c} \times \tilde{\rho}_{j_0}, \n\rho_{j_1} \times \rho_{j_c} \cong \rho_{j_c} \times \rho_{j_1}, \quad \tilde{\rho}_{j_1} \times \rho_{j_c} \cong \rho_{j_c} \times \tilde{\rho}_{j_1}.
$$

If $n - m > 1$, then, by Lemma 4.3, $\rho_{j_0} \rtimes \sigma$ and $\rho_{j_1} \rtimes \sigma$ are irreducible. Now we get from Proposition 4.2

$$
\rho_{j_0} \rtimes \sigma \cong \tilde{\rho}_{j_0} \rtimes s^{n_{j_0}}(\sigma),
$$

$$
\rho_{j_1} \rtimes \sigma \cong \tilde{\rho}_{j_1} \rtimes s^{n_{j_1}}(\sigma),
$$

for $n - m > 1$, and

$$
\rho_{j_0} \rtimes 1 \cong s^{n_{j_0}}(\tilde{\rho}_{j_0} \rtimes 1),
$$

$$
\rho_{j_1} \rtimes 1 \cong s^{n_{j_1}}(\tilde{\rho}_{j_1} \rtimes 1),
$$

for $n = m$. Write

$$
Y_{i_0}^0 = \{a_1, \ldots, a_{k_0}\}, \quad a_i < a_j \text{ for } i < j,
$$

\n
$$
Y_{i_0}^1 = \{b_1, \ldots, b_{k_1}\}, \quad b_i < b_j \text{ for } i < j,
$$

\n
$$
Y_{i_0}^c = \{d_1, \ldots, d_{k_c}\}, \quad d_i < d_j \text{ for } i < j.
$$

If $n - m \geq 2$, then we can repeat the proof from [T3], since we have just slightly different relations, and square integrability criteria are the same.

Let $m = n$. Set $\alpha = n_{\beta_{k_1}}$. Then

$$
\rho_1 \times \cdots \times \rho_k \rtimes 1 \cong
$$
\n
$$
\cong \rho_{a_1} \times \cdots \times \rho_{a_{k_0}} \times \rho_{d_1} \times \cdots \times \rho_{d_{k_c}} \times \rho_{b_1} \times \cdots \times \rho_{b_{k_1}} \rtimes 1
$$
\n
$$
\cong \rho_{a_1} \times \cdots \times \rho_{a_{k_0}} \times \rho_{d_1} \times \cdots \times \rho_{d_{k_c}} \times \rho_{b_1} \times \cdots \times \rho_{b_{k_1-1}} \times s^{\alpha}(\tilde{\rho}_{b_{k_1}} \rtimes 1)
$$
\n
$$
\cong s^{\alpha}(\rho_{a_1} \times \cdots \times \rho_{a_{k_0}} \times \rho_{d_1} \times \cdots \times \rho_{d_{k_c}} \times \rho_{b_1} \times \cdots \times \rho_{b_{k_1-1}} \times \tilde{\rho}_{b_{k_1}} \rtimes 1)
$$
\n
$$
\cong s^{\alpha}(\rho_{a_1} \times \cdots \times \rho_{a_{k_0}} \times \rho_{d_1} \times \cdots \times \rho_{d_{k_c}} \times \tilde{\rho}_{b_{k_1}} \times \rho_{b_1} \times \cdots \times \rho_{b_{k_1-1}} \rtimes 1).
$$
\nWe proceed in the same way, and finally we get

 $\rho_1 \times \cdots \times \rho_k \rtimes 1 \cong s^{\gamma}(\rho_{a_1} \times \cdots \times \rho_{a_{k_0}} \times \tilde{\rho}_{b_{k_1}} \times \cdots \times \tilde{\rho}_{b_1} \times \rho_{d_1} \times \cdots \times \rho_{d_{k_c}} \rtimes 1),$ where $\gamma = 0$ or 1.

In the same manner, we obtain

 $\rho_1 \times \cdots \times \rho_k \rtimes 1 \cong s^{\delta}(\rho_{b_1} \times \cdots \times \rho_{b_{k_1}} \times \tilde{\rho}_{a_{k_0}} \times \cdots \times \tilde{\rho}_{a_1} \times \rho_{d_1} \times \cdots \times \rho_{d_{k_c}} \rtimes 1),$ where $\delta = 0$ or 1.

By the Frobenius reciprocity, the representations

$$
\rho' = s^{\gamma}(\rho_{a_1} \otimes \cdots \otimes \rho_{a_{k_0}} \otimes \tilde{\rho}_{b_{k_1}} \otimes \cdots \otimes \tilde{\rho}_{b_1} \otimes \rho_{d_1} \otimes \cdots \otimes \rho_{d_{k_c}} \otimes 1),
$$

$$
\rho'' = s^{\delta}(\rho_{b_1} \otimes \cdots \otimes \rho_{b_{k_1}} \otimes \tilde{\rho}_{a_{k_0}} \otimes \cdots \otimes \tilde{\rho}_{a_1} \otimes \rho_{d_1} \otimes \cdots \otimes \rho_{d_{k_c}} \otimes 1)
$$

are the quotients of corresponding Jacquet modules. Now $\rho_{a_1} \times \cdots \times$ $\rho_{a_{k_0}} \times \rho_{b_1} \times \cdots \times \rho_{b_{k_1}}$ is representation of $GL(u, F)$, for some $u \leq n$. If $u \neq n-1$ then $(\beta_u, e_*(\rho')) = -(\beta_u, e_*(\rho''))$. If $u = n-1$, then $(\beta_{n-1}, e_*(\rho')) + (\beta_n, e_*(\rho')) = -(\beta_{n-1}, e_*(\rho'')) - (\beta_n, e_*(\rho'')).$

10 DUBRAVKA BAN

Anyway, this contradicts the assumption that π is square integrable.

Generally, let π be an irreducible subquotient of $i_{G,M}(\rho)$. By [C], Corollary 7.2.2, there exists $w \in W = N_G(M)/M$ such that π is a subrepresentation of $i_{G,M}(w(\rho))$. Let $\rho = \rho_1 \otimes \cdots \otimes \rho_k \otimes \sigma$ and $w(\rho) =$ $\delta_1 \otimes \cdots \otimes \delta_k \otimes \tau$. We apply the first part of the proof on $w(\rho)$, and we get $\delta_i^u \cong (\delta_i^u)^\sim$, $i = 1, 2, \ldots, k$. By [G], the sequence $\delta_1, \ldots, \delta_k$ is, up to a permutation and taking a contragredient, the sequence ρ_1, \ldots, ρ_k . ✷

Theorem 6.2. Suppose that $\rho_1, \rho_2, \ldots, \rho_k$ are irreducible cuspidal representations of $GL(n_1, F), \ldots, GL(n_k, F)$, resp., and σ is an irreducible cuspidal representation of $SO(2l, F), l \neq 1$, such that $\rho_1 \times \cdots \times \rho_k \times \sigma$ contains a square integrable subquotient. Further, assume that for each unitary representation ρ , the number α , discussed in Lemma 4.3., satisfies $2\alpha \in \mathbb{Z}$. Then $2e(\rho_i) \in \mathbb{Z}$, for any $i = 1, 2, \ldots, k$.

Proof. The proof is analogous to that of Theorem 6.1. \Box

REFERENCES

- [BZ] I.N.Bernstein and A.V.Zelevinsky, Induced representations of reductive p-adic groups, I, Ann. Sci. École Norm. Sup. 10 (1977), 441-472.
- [BDK] J.Bernstein, P.Deligne, and D.Kazhdan, Trace Paley-Wiener theorem for reductive p-adic groups, J.Analyse Math.42 (1986), 180- 192.
	- [C] W.Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint
	- [F] D.K.Faddeev, On multiplication of representations of classical groups over finite field with representations of the full linear group, Vest. Leningrad. Univ. 13 (1976), 35-40.[in Russian]
	- [G] D.Goldberg, Reducibility of induced representations for $Sp(2n)$ and $SO(n)$, Amer. J. Math. vol(116), 1994, 1101-1151.
	- [Sw] M.E.Sweedler, "Hopf Algebras", Benjamin, New York, 1969.
	- [T1] M.Tadić, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. of Algebra 177 (1995), 1-33.
- [T2] M.Tadić, Representations of p-adic symplectic groups, Compositio Math. 90 (1994) 123-181
- [T3] M.Tadić, On regular square integrable representations of p -adic groups, American Journal of Mathematics 120 (1998), 159-210.
	- [Z] A.V.Zelevinsky, Induced representations of reductive p-adic groups, II, On irreducible representations of $GL(n)$, Ann. Sci. Ecole Norm. Sup. 13 (1980), 165-210.

Department of Mathematics, University of Split, Teslina 12, 21 000 SPLIT, CROATIA

 $\it E\mbox{-}mail\;address:$ dban@mapmf.pmfst.hr