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Abstract. For the sum of the Grothendieck groups of the cate-
gories of smooth finite length representations of O(2n, F ) (resp.,
SO(2n, F )), n ≥ 0, (F a p-adic field), the structure of a mod-
ule and a comodule over the sum of the Grothendieck groups of
the categories of smooth finite length representations of GL(n, F ),
n ≥ 0, is achieved. The multiplication is defined in terms of par-
abolic induction, and the comultiplicitation in terms of Jacquet
modules. Also, for even orthogonal groups, the combinatorial for-
mula, which connects the module and the comodule structures, is
obtained.

1. Introduction

In this paper, we deal with

R(O) =
⊕

n≥0

Rn(O)

where Rn(O) denotes the Grothendieck group of the category of smooth
finite length representations of O(2n, F ), F a p-adic field. R(O) is a
module and a comodule over the Hopf algebra R =

⊕

n≥0

Rn; here Rn

denotes the Grothendieck group of the category of smooth finite length
representations of GL(n, F ).

The structure of R was described by Zelevinsky in [Z1]. The defi-
nition of the multiplication m : R ⊗ R → R and the comultiplication
m∗ : R → R ⊗R is based on the fact that for 0 ≤ k ≤ n there exists a
standard parabolic subgroup of GL(n, F ) whose Levi factor is isomor-
phic to GL(k, F ) ×GL(n − k, F ). The multiplication is defined using
parabolic induction, and the comultiplication by Jacquet modules (see
the third section of this paper). The structure of a Hopf algebra on R
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includes the Hopf axiom; it is the property that m∗ is a ring homomor-
phism.

For O(2n, F ) and 0 ≤ k ≤ n, there is a standard parabolic subgroup
whose Levi factor is isomorphic to GL(k, F )×O(2(n−k), F ). So, there
is a natural way to define (using parabolic induction) the action ⋊ of
R on R(O), and (using Jacquet modules) the mapping µ∗ : R(O) →
R× R(O). This is done in the sixth section.

There is also a connection between the module and the comodule
structures on R(O). Let

M∗ = (m⊗ 1) ◦ (∼ ⊗ m∗) ◦ s ◦m∗,

where s : R⊗R → R⊗R is the homomorphism determined by s(r1 ⊗
r2) = r2 ⊗ r1, r1, r2 ∈ R. Then we have

µ∗(π ⋊ σ) = M∗(π) ⋊ µ∗(σ),(*)

so R(O) is an M∗-Hopf module over R (see [T1] for the definition).
The formula (*) can be used to find a composition series for Jacquet
modules of parabolically induced representations.

The kind of work we have done for even orthogonal groups was first
done by Tadić; in [T1] he introduced such a structure in the cases
of symplectic and special odd-orthogonal groups, and he proved the
combinatorial formula (*) for those groups. He also raised the question
of the existence of such a structure for other series of classical p-adic
groups.

We now give a short summary of the paper. In the second section, we
give the definitions and some results of Bernstein and Zelevinsky, and
Casselman, about parabolic induction and Jacquet modules. The third
section describes the structure of R, as it is done in [Z1]. The fourth
section is about standard parabolic subgroups of SO(2n, F ) and about
R(S) (the definition is analogous to R(O)). R(S) is an R-module and
R-comodule. The fifth section contains calculations in the root system
for the case of Dn, i.e., for the group SO(2n, F ). This is used in the sixth
section to find double cosets of O(2n, F ). In this section we also define
the module and the comodule structures for even orthogonal groups.
In the seventh section, we have applied the proof of the combinatorial
formula from [T1] to our case.

I would like to close the introduction by thanking Marko Tadić, who
suggested this project and helped its realisation. Also, I am very grate-
ful to the referee for his valuable comments and English corrections.
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2. Preliminaries

In this section, we shall introduce some basic notation and recall
some results that will be needed in the rest of the paper. Our presen-
tation follows the papers [BZ2] and [C].

A Hausdorff topological group G is called an l-group if any neigh-
bourhood of the identity contains an open compact subgroup.

Let G be an l-group, M,U closed subgroups, such that M normalises
U, M ∩ U = {e} and the subgroup P = MU ⊆ G is closed; let θ be
a character of U normalised by M. In such a situation, we define the
functors

IU,θ, iU,θ : AlgM → AlgG,

rU,θ : AlgG→ AlgM.

(Here AlgG denotes the category of algebraic (=smooth) representa-
tions of G.)

(a) Let (ρ, L) ∈ AlgM. Denote by I(L) the space of functions f :
G→ L satisfying the following conditions:

1. f(umg) = θ(u) ∆
1/2
U (m)ρ(m)(f(g)), u ∈ U, m ∈M, g ∈ G.

(Here ∆U denotes the modular character.)
2. There exists an open subgroup Kf ⊂ G such that

f(gk) = f(g), for g ∈ G, k ∈ Kf .

Define the representation (δ, I(L)) ∈ AlgG by (δ(g)f)(g′) = f(g′g).
We call δ an induced representation and denote it by IU,θ(ρ).

Denote by i(L) the subspace of I(L) consisting of all functions com-
pactly supported modulo the subgroup P = MU. The restriction of δ
to the space i(L) is called compactly induced and is denoted by iU,θ(ρ).

(b) Let (π,E) ∈ AlgG. Denote by E(U, θ) ⊆ E the subspace spanned
by the vectors of the form

π(u)ξ − θ(u)ξ, u ∈ U, ξ ∈ E.

The quotient space E/E(U, θ) is called the θ-localisation of the space
E and is denoted by rU,θ(E). Define the representation (δ, rU,θ(E)) ∈
AlgM by

δ(m)(ξ + E(U, θ)) = ∆
−1/2
U (m)(π(m)ξ + E(U, θ)), m ∈M, ξ ∈ E;

it is easily verified that δ is well-defined. Call the representation δ the
θ-localisation of π and denote it by rU,θ(π).
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We shall now state a result of Bernstein and Zelevinsky (Theorem
5.2 of [BZ2]).

Let G be an l-group, P,M,U and Q,N, V be closed subgroups, θ be
a character of U and ψ be a character of V. Suppose that

(1) MU = P, NV = Q, M ∩U = N ∩ V = {e}, M normalises U
and θ, N normalises V and ψ.

Then there are defined functors

iU,θ : AlgM → AlgG and rV,ψ : AlgG→ AlgN.

We want to compute the functor

F = rV,ψ ◦ iU,θ : AlgM → AlgN.

It requires some complementary conditions. Suppose that
(2) The group G is countable in infinity, and U , V are limits of com-

pact subgroups.
Consider the space X = P\G with its quotient-topology and

the action δ of G on X defined by

δ(g)(Ph) = Phg−1, g, h ∈ G,Ph ∈ X.

Suppose that
(3) The subgroup Q has a finite number of orbits on X. Acording to

([BZ1],1.5), one can choose a numbering Z1, ..., Zk of the Q-orbits
on X such that all sets

Y1 = Z1, Y2 = Z1 ∪ Z2, ..., Yk = Z1 ∪ ... ∪ Zk = X

are open in X. In particular, all Q-orbits on X are locally closed.
Fix a Q-orbit Z ⊆ X. Choose w̄ ∈ G such that Pw̄−1 ∈ Z and

denote by w the corresponding inner automorphism of G: w(g) =
w̄gw̄−1. Call a subgroup H ⊆ G decomposable with respect to the
pair (M,U), if H ∩ (MU) = (H ∩M)(H ∩ U). Suppose that

(4) The groups w(P ), w(M) and w(U) are decomposable with respect
to (N, V ); the groups w−1(Q), w−1(N) and w−1(V ) are decompos-
able with respect to (M,U).

If the conditions (1)-(4) hold, we define the functor ΦZ : AlgM →
AlgN. Consider the condition

(*) The characters w(θ) and ψ coincide when restricted to the sub-
group w(U) ∩ V.

If (*) does not hold, set ΦZ = 0. If (*) holds then define the functor
ΦZ in the following way.

Set

M ′ = M ∩ w−1(N), N ′ = w(M ′) = w(M) ∩N,

V ′ = M ∩ w−1(V ), ψ′ = w−1(ψ) |V ′ , U ′ = N ∩ w(U), θ′ = w(θ) |U ′ .
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It is clear that the following functors are defined

rV ′,ψ′ : AlgM → AlgM ′,

w : AlgM ′ → AlgN ′,

iU ′,θ′ : AlgN ′ → AlgN.

Let ε1 = ∆
−1/2
U ∆

1/2

U∩w−1(Q)
be a character of M ′, ε2 = ∆

−1/2
V ∆

1/2
V ∩w(P ) be

a character of N ′ and ε = ε1.w(ε2) be a character of M ′. We define ΦZ

by

ΦZ = iU,θ′ ◦ w ◦ ε ◦ rV ′,ψ′ : AlgM → AlgN

(here ε is considered as a functor, see [BZ2] 1.5). In a more symmetric
form,

ΦZ = iU ′,θ′ ◦ ε2 ◦ w ◦ ε1 ◦ rV ′,ψ′.

Theorem 2.1. Under the conditions (1)-(4) the functor F = rV,ψ ◦
iU,θ : AlgM → AlgN is glued from the functors ΦZ where Z runs
through all Q-orbits on X. More precisely, if orbits Z1, ..., Zk are nu-
merated so that all sets Yi = Z1 ∪ . . . ∪ Zi (i = 1, ..., k) are open in X,
then there exists a filtration 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = F such that
Fi/Fi+1 ≃ ΦZi

.

(Let A be an abelian category and C1, C2, . . . , Ck ∈ A. We say that
the object D ∈ A is glued from C1, C2, . . . , Ck if there is a filtration
0 = D0 ⊂ D1 ⊂ · · · ⊂ Dk = D in D, such that the set of quotients
{Di/Di−1} is isomorphic after a permutation to the set {Ci}.)

Let F be a locally compact nonarchimedean field. By an algebraic
F -group we mean the group of F -points of some algebraic group, de-
fined over F. In a natural locally compact topology such groups are
l-groups.

Let G be a connected (in an algebraic sense) reductive F -group. Fix
from now on a minimal parabolic subgroup P0 ⊂ G and a maximal
split torus A0 ⊂ P0.

Let P be a parabolic subgroup containing P0. We call such a group
a standard parabolic subgroup. Let U be the unipotent radical of P.
There exists a unique Levi subgroup in P containing A0; denote it by
M (it is a connected reductive F -group). It is known that P normalises
U and has the Levi decomposition P = MU, M ∩ U = {e}. We define
the functors

iG,M : AlgM → AlgG and rM,G : AlgG→ AlgM
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by

iG,M = iU,1, rM,G = rU,1.

For σ ∈ AlgM we call iG,M(σ) the parabolically induced representation
of G by σ from P , and for π ∈ AlgGwe call rM,G(π) the Jacquet module
of π with respect to P.

Denote by Σ the set of (reduced) roots of G relative to A0. The choice
of P0 determines a basis ∆ of Σ (which consists of simple roots). It also
determines a set of positive roots Σ+. Denote by W the Weyl group of
G. For θ ⊆ ∆, we denote by Wθ the subgroup of W generated by all
reflections {wα | α ∈ θ} . If P = Pθ = MU is the standard parabolic
subgroup of G determined by θ, then Wθ is also denoted by WM .

Let Ω, θ ⊂ ∆. Now, we shall describe the set [Wθ\W/WΩ] , a set of
representatives of Wθ\W/WΩ, defined in [C].

For α ∈ ∆, set

W α = {w ∈W | wα > 0}, αW = {w ∈ W | w−1α > 0}.

We have

[W/WΩ] =
⋂

α∈Ω

W α, [WΩ\W ] =
⋂

α∈Ω

αW,

[Wθ\W/WΩ] = [Wθ\W ] ∩ [W/WΩ] .

If P = Pθ = MU and Q = PΩ = NV are standard parabolic sub-
groups of G, then we have a bijection WM\W/WN

∼= P\G/Q (see
[BT], 5.15,5.20). From this relation and Theorem 1.1 Bernstein and
Zelevinsky obtained the geometric lemma ([BZ2]). The same result
was obtained independently by Casselman in [C].

Theorem 2.2 (Geometric lemma). Let G be a connected reductive p-
adic group, P = Pθ = MU, Q = PΩ = NV parabolic subgroups. Let
σ be an admissible representation of M. Then rN,G ◦ iG,M (σ) has a
composition series with factors

iN,N ′ ◦ w−1 ◦ rM ′,M(σ)

where M ′ = M ∩ w(N), N ′ = w−1(M) ∩ N and w ∈ [Wθ\W/WΩ] .

Let π be a smooth finite length representation of G. We identify it
canonically with an element of the Grothendieck group of the category
of all smooth finite length representations of G. We denote this element
by s.s.(π) and call this map semi-simplification.
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3. General linear group

In this section, we shall recall some results of the representation
theory of p-adic general linear groups. The proofs can be found in
[BZ2] and [Z1].

Fix the minimal parabolic subgroup of GL(n, F ) which consists of
all upper triangular matrices in GL(n, F ). The standard parabolic sub-
groups of GL(n, F ) can be parametrized by ordered partitions of n: for
α = (n1, . . . , nk) there exists a standard parabolic subgroup (denote it
in this section by Pα) of GL(n, F ) whose Levi factor Mα is naturally
isomorphic to GL(n1, F )× · · · ×GL(nk, F ).

Denote by Rn the Grothendieck group of the category of smooth
representations of GL(n, F ). Rn is a free abelian group; it has a basis
consisting of equivalence classes of irreducible smooth representations
of GL(n, F ). Let

R =
⊕

n≥0

Rn.

We shall define a multiplication and a comultiplication on R.
Let π1, π2 be admissible representations of GL(n1, F ), GL(n2, F ),

resp., n1 + n2 = n. Define

π1 × π2 = iGL(n,F ),M (n1,n2)(π1 ⊗ π2).

Now, for irreducible smooth representations π, τ ∈ R, we put π × τ =
s.s.(π× τ ). We extend × Z-bilinearly to R×R. The induced mapping
R⊗ R → R, π ⊗ τ 7→ π × τ is denoted by m.

Let π be a smooth representation of GL(n, F ) of finite length. For
α = (n1, . . . , nk) we define

rα,(n)(π) = rMα,GL(n,F )(π).

This is a representation of Mα
∼= GL(n1, F ) × · · · × GL(nk, F ), so we

may consider s.s.(rα,(n)(π)) ∈ Rn1 ⊗ · · · ⊗ Rnk
. Now we define

m∗(π) =

n
∑

k=0

s.s.(r(k,n−k),(n)(π)) ∈ R ⊗ R.

We extend m∗
Z-linearly to all R.

With the multiplicationm and the comultiplicationm∗, R is a graded
Hopf algebra. This means that R is Z+-graded as an abelian group, m
and m∗ are Z+-graded, R has an algebra and coalgebra structure, and
the comultiplication m∗ : R → R ⊗ R is a ring homomorphism.

Let g ∈ GL(n, F ). We denote by tg the transposed matrix of g , and
by τg the matrix of g transposed with respect to the second diagonal.
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4. Special orthogonal group SO(2n, F )

From now on, F will be a fixed local non-archimedean field of char-
acteristic different from two.

The special orthogonal group SO(2n, F ), n ≥ 1, is the group

SO(2n, F ) = {X ∈ SL(2n, F ) | τXX = I2n} .

For n = 1, we get

SO(2, F ) =

{[

λ 0
0 λ−1

]∣

∣

∣

∣

λ ∈ F×

}

∼= F×.

SO(0, F ) is defined to be the trivial group.
Denote by A0 the maximal split torus in SO(2n, F ) which consists

of all diagonal matrices in SO(2n, F ). Hence,

A0 =
{

diag(x1, . . . , xn, x
−1
n , . . . , x−1

1 )
∣

∣ xi ∈ F×
}

∼= (F×)n.

Denote by a the natural isomorphism of (F×)n toA0 defined by a(x1, ..., xn) =
diag(x1, . . . , xn, x

−1
n , . . . , x−1

1 ).
We fix the minimal parabolic subgroup P0 which consists of all upper

triangular matrices in SO(2n, F ).
The root system is of type Dn :

the roots: ±ei ± ej, 1 ≤ i < j ≤ n,
the positive roots: ei − ej, 1 ≤ i < j ≤ n,

ei + ej, 1 ≤ i < j ≤ n,
the simple roots: αi = ei − ei+1, 1 ≤ i ≤ n− 1, αn = en−1 + en.

The set of simple roots is denoted by ∆. The action of the simple roots
on A0 is given by

αi(a(x1, ..., xn)) = xix
−1
i+1, 1 ≤ i ≤ n − 1,

αn(a(x1, ..., xn)) = xn−1xn.

Let us describe the standard parabolic subgroup Pθ = MθUθ, θ ⊆ ∆.
For i = 1, ..., n we define

Ωi =

{

∆\{αi}, i 6= n− 1,
∆\{αn, αn−1}, i = n− 1.

For i = 0, we put Ω0 = ∆. If θ can be written in the form θ =
⋂

i∈I

Ωi, I =

{i1, ..., ik}, i1 < i2 < ... < ik, then

Mθ =
{

diag(g1, ..., gk, h,
τg−1
k , ..., τg−1

1 ) | gi ∈ GL(ni, F ), h ∈ SO(2(n −m), F )
}

,
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where n1 = i1, n1 + n2 = i2, ..., n1 + · · · + nk = ik = m. Put α =
(n1, ..., nk). Mθ is also denoted by Mα. In this case we have

Mθ
∼= GL(n1, F ) ×GL(n2, F )× · · · ×GL(nk, F )× SO(2(n −m), F ).

If θ cannot be written in such a form (this happens when αn−1 /∈
θ, αn ∈ θ), then we have

Mθ = s MΩ s−1, where Ω = (θ\{αn}) ∪ {αn−1},

s =









I
0 1
1 0

I









.

Note that the presentation of θ in the form θ =
⋂

i∈I

Ωi is not always

unique. Namely, when αn−1 /∈ I and αn /∈ I, we may take n − 1 ∈
I, n ∈ I or n− 1 ∈ I, n /∈ I. In that case we have

Mθ =
{

diag(g1, ..., gk, h,
τg−1
k , ..., τg−1

1 ) | gi ∈ GL(ni, F ), h = diag(x, x−1), x ∈ F×
}

,

so we may consider

Mθ
∼= GL(n1, F )×GL(n2, F )× · · · ×GL(nk, F )×GL(1, F ),

or

Mθ
∼= GL(n1, F )×GL(n2, F )× · · · ×GL(nk, F ) × SO(2, F ).

For us, it will be important that for any ordered partition α = (n1, ..., nk)
of a non-negative integerm ≤ n we have a standard parabolic subgroup
of SO(2n, F ) whose Levi factor Mα is isomomorphic to GL(n1, F ) ×
GL(n2, F )× · · · ×GL(nk, F ) × SO(2(n −m), F ).

Now, take smooth finite length representations π of GL(n, F ) and σ
of SO(2m,F ). Let P(n) = M(n)U(n) be a standard parabolic subgroup
of SO(2(m + n), F ). Hence, M(n)

∼= GL(n, F ) × SO(2m,F ), so π ⊗ σ
can be taken as a representation of M(n).Define

π ⋊ σ = iM(n),SO(2(m+n),F )(π ⊗ σ).

Proposition 4.1. Let π, π1 and π2 be finite length smooth representa-
tions of the groups GL(n, F ), GL(n1, F ) and GL(n2, F ) respectively,
and let σ be a finite length smooth representation of SO(2m,F ). Then

(i) π1 ⋊ (π2 ⋊ σ) ∼= (π1 × π2) ⋊ σ,
(ii) (π ⋊ σ)∼ ∼= π̃ ⋊ σ̃.



10 DUBRAVKA BAN

(Here π̃ denotes the contragredient representation of π.)
Proof. The proof is straightforward and follows from [BZ2], Propo-

sition 2.3. ✷

Denote by Rn(S) the Grothendieck group of the category of all finite
length smooth representations of SO(2n, F ). Define

R(S) =
⊕

n≥0

Rn(S).

The multiplication of representations ⋊ we introduced above gives rise
to a multiplication ⋊ : R × R(S) → R(S). For irreducible smooth
representations π ∈ R and σ ∈ R(S), we put

π ⋊ σ = s.s.(π⋊ σ),

and extend ⋊ Z-bilinearly to R × R(S). Now, we can get a Z-linear
mapping, denote it by µ : R⊗R(S) → R(S), which satisfies µ(π⊗σ) =
s.s.(π⋊ σ) for π ∈ R and σ ∈ R(S).

Proposition 4.2. (R(S), µ) is a Z+-graded module over R.

Proof. See [Sw] for the definition of a module over a Hopf algebra.
We are interested in the property of associativity, i.e., that the following
diagram commutes:

R ⊗ R⊗ R(S)
id⊗µ
−→ R⊗ R(S)

m⊗id ↓ ↓µ

R⊗ R(S)
µ

−→ R(S).

The proof of this property relies on the previous proposition. ✷

Let σ be a finite length smooth representation of SO(2n, F ). Let α =
(n1, ..., nk) be an ordered partition of a non-negative integer m ≤ n.
Define

sα,(0)(σ) = rMα,SO(2n,F )(σ).

This is a representation of Mα
∼= GL(n1, F ) × GL(n2, F ) × · · · ×

GL(nk, F ) × SO(2(n − m), F ), so we may consider s.s.(sα,(0)(σ)) ∈
Rn1 ⊗ · · · ⊗ Rnk

⊗ Rn−m(S). Now we shall define a Z-linear mapping
µ∗ : R(S) → R ⊗ R(S). For an irreducible smooth representation
σ ∈ R(S), we define

µ∗(σ) =
n
∑

k=0

s.s.(s(k),(0)(σ)).

We extend µ∗
Z-linearly to µ∗ : R(S) → R⊗ R(S).

Proposition 4.3. (R(S), µ∗) is Z+-graded R−comodule.
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Proof. The definition of a comodule over a Hopf algebra can be found
in [Sw]. We are interested in coassociativity, i.e., that the following
diagram commutes:

R(S)
µ∗

−→ R ⊗R(S)
µ∗ ↓ ↓id⊗µ

∗

R ⊗ R(S)
m∗⊗id
−→ R ⊗R ⊗ R(S).

The proof follows from [BZ2], Prop.2.3. ✷

The above construction is analogous those Tadić did in [T1] for
Sp(n, F ) and SO(2n + 1, F ).

5. Calculations in the root system, the case of Dn

In this section we shall make the calculations in the Weyl group we
need for the geometric lemma. Precisely, for i1, i2 ∈ {1, 2, . . . , n} we
shall find

[

WΩi1
\W/WΩi2

]

and for w ∈
[

WΩi1
\W/WΩi2

]

, determine
Ωi1 ∩ w(Ωi2).

First, we shall describe the Weyl group:

W ∼= {±1}n−1
⋊ Sym(n),

where

{±1}n−1 =

{

(ǫ1, ..., ǫn) ∈ {±1}n |
∏

i

ǫi = 1

}

.

Sym(n) acts on the roots ±ei±ej by permutations of the set {e1, ..., en},
and (ǫ1, ..., ǫn) acts as sign changes (−1 in the i-th place of ǫ = (ǫ1, ..., ǫn)
denotes the interchange of ei and −ei). For p ∈ Sym(n) and (ǫ1, ..., ǫn) ∈
{±1}n−1, we have

p(ǫ1, ..., ǫn)p
−1 = (ǫp−1(1), ..., ǫp−1(n)).

It follows that

[p(ǫ1, ..., ǫn)]
−1 = p−1(ǫp−1(1), ..., ǫp−1(n)),

[(ǫ1, ..., ǫn)p]
−1 = (ǫp(1), ..., ǫp(n))p

−1.

Now we shall use the formulas from [C] for [WΘ\W/WΩ] we listed
before. The beginning of our calculation is almost the same as in [T1],
and the first four lemmas are very similar.
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By the definition of the action of W on roots, for p ∈ Sym(n) and
(ǫ1, ..., ǫn) ∈ {±1}n we have

pǫ(αi) = pǫ(ei − ei+1) = p(ǫiei − ǫi+1ei+1) = ǫiep(i) − ǫi+1ep(i+1), 1 ≤ i ≤ n− 1,

pǫ(αn) = pǫ(en−1 + en) = p(ǫn−1en−1 + ǫnen) = ǫn−1ep(n−1) + ǫnep(n).

As we said, W αi = {w ∈ W | wαi > 0}. If we check when pǫ(αi) >
0, 1 ≤ i ≤ n, then we easily get the following lemma.

Lemma 5.1. a) For 1 ≤ i ≤ n − 1, W αi is the disjoint union of the
following three sets:

(i) {pǫ ∈W | ǫi = ǫi+1 = 1, p(i) < p(i+ 1)};
(ii) {pǫ ∈W | ǫi = 1, ǫi+1 = −1};
(iii) {pǫ ∈W | ǫi = ǫi+1 = −1, p(i) > p(i+ 1)}

b) W αn is the disjoint union of the following three sets:

(i) {pǫ ∈W | ǫn−1 = ǫn = 1};
(ii) {pǫ ∈W | ǫn−1 = 1, ǫn = −1, p(n − 1) < p(n)};
(iii) {pǫ ∈W | ǫn−1 = −1, ǫn = 1, p(n − 1) > p(n)}.

In the same way, we can compute αiW = {w ∈ W | w−1αi > 0}.

Lemma 5.2. a) For 1 ≤ i ≤ n − 1, αiW is the disjoint union of the
following three sets:

(i)
{

pǫ ∈W | ǫp−1(i) = ǫp−1(i+1) = 1, p−1(i) < p−1(i+ 1)
}

;

(ii)
{

pǫ ∈W | ǫp−1(i) = 1, ǫp−1(i+1) = −1
}

;

(iii)
{

pǫ ∈W | ǫp−1(i) = ǫp−1(i+1) = −1, p−1(i) > p−1(i+ 1)
}

.

b) αnW is the disjoint union of the following three sets:

(i)
{

pǫ ∈W | ǫp−1(n−1) = ǫp−1(n) = 1
}

;

(ii)
{

pǫ ∈W | ǫp−1(n−1) = 1, ǫp−1(n) = −1, p−1(n− 1) < p−1(n)
}

;

(iii)
{

pǫ ∈W | ǫp−1(n−1) = −1, ǫp−1(n) = 1, p−1(n− 1) > p−1(n)
}

.

In the next lemma, we shall use the formula [W/WΩ] =
⋂

α∈ΩW
α,

for Ω ⊆ ∆.

Lemma 5.3. Let 1 ≤ i ≤ n and let 0 ≤ j ≤ i. Denote by Y i
j the set of

all pǫ ∈W such that the following six conditions are satisfied:

(i) ǫk = 1, for 1 ≤ k ≤ j;
(ii) p(k1) < p(k2), for 1 ≤ k1 < k2 ≤ j;
(iii) ǫk = −1, for j + 1 ≤ k ≤ i;
(iv) p(k1) > p(k2), for j + 1 ≤ k1 < k2 ≤ i;
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(v) ǫk = 1, for i+ 1 ≤ k ≤ n− 1;
(vi) p(k1) < p(k2), for i+ 1 ≤ k1 < k2 ≤ n.

Denote by Ȳ n
j the set of all pǫ ∈W which satisfy the same conditions

(for i = n), but instead of (iii), the condition

(iii’) ǫk = −1, for j + 1 ≤ k ≤ n − 1, ǫn = 1.

Then

[W/WΩi
] =

⋃

0≤j≤i

Y i
j ,

[W/WΩ̄n
] =

⋃

0≤j≤n−1

Ȳ n
j .

Here Ω̄n = ∆\{αn−1}.

Proof. Take pǫ ∈ [W/WΩi
] =

⋂

α∈Ωi
W α.

If i < n− 1, then pǫ ∈W αn ∩W αn−1. From Lemma 5.1 a) for n− 1
and Lemma 5.1 b) for n we get

ǫn−1 = 1, ǫn = −1, p(n− 1) < p(n),

or

ǫn−1 = 1, ǫn = 1, p(n − 1) < p(n).

Anyway, ǫn−1 = 1, p(n− 1) < p(n). Further, Lemma 5.1.a) implies

ǫi+1 = ǫi+2 = · · · = ǫn−1 = 1, p(i+ 1) < p(i + 2) < · · · < p(n).

Now, we have

ǫk = 1, for i+ 1 ≤ k ≤ n− 1, and p(k1) < p(k2), for i+ 1 ≤ k1 < k2 ≤ n.

This condition is also satisfied for i = n− 1 or i = n, because in those
cases it is empty.

Since pǫ ∈W αk , ∀k ∈ {1, . . . , i−1}, Lemma 5.1 implies that for any
k ∈ {1, . . . , i − 1}, we have ǫk = ǫk+1 = 1 or ǫk = 1, ǫk+1 = −1 or
ǫk = ǫk+1 = −1. We cannot have ǫk = −1, ǫk+1 = 1. So we conclude
that there exists j ∈ {0, 1, ..., i} such that ǫj = 1 for 1 ≤ k ≤ j− 1 and
ǫk = −1 for j+1 ≤ k ≤ i−1. Lemma 5.1 also implies p(k) < p(k+1) for
1 ≤ k ≤ j−1 and p(k) > p(k+1) for j+1 ≤ k ≤ i−1. Hence, pǫ ∈ Y i

j

where 0 ≤ j ≤ i.
If pǫ ∈

⋃

0≤j≤i Y
i
j ,then we see from Lemma 5.1 that pǫ ∈ W αl for

l 6= i, in the case i 6= n − 1, and pǫ ∈ W αl for l 6= n − 1, l 6= n in the
case i = n− 1. This proves the other inclusion.
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Let pǫ ∈ [W/WΩ̄n
] =

⋂

l 6=n−1 W
αl.

Suppose that ǫn−1 = 1. Then by Lemma 5.1 a), we get ǫ1 = ǫ2 =
· · · = ǫn−1 = 1, p(k1) < p(k2), for 1 ≤ k1 < k2 ≤ n−1. The condition
∏

i

ǫi = 1 gives us ǫn = 1. Put j = n − 1. Then, the conditions (i), (ii)

and (iii′) are satisfied, and the others are empty.
Let ǫn−1 = −1. Then by Lemma 5.1 b) we get ǫn = 1, p(n − 1) >

p(n).It follows from Lemma 5.1.a) that there exists j ∈ {0, 1, ..., n− 2}
such that

ǫk = 1, for 1 ≤ k ≤ j, p(k1) < p(k2), for 1 ≤ k1 < k2 ≤ j,

and

ǫk = −1, for j + 1 ≤ k ≤ n− 1, p(k1) > p(k2), for j + 1 ≤ k1 < k2 ≤ n− 1.

Together with the first condition, we get

ǫk = −1, for j + 1 ≤ k ≤ n− 1, p(k1) > p(k2), for j + 1 ≤ k1 < k2 ≤ n.

Therefore, the conditions (i), (ii), (iii′) and (iv) are satisfied, and the
others are empty.

The other inclusion can be proved as before.
✷

Remark 5.1. If pǫ ∈W, ǫ = (ǫ1,...,ǫn), then
n
∏

i=1

ǫi = 1. Thus we have

for i < n : pǫ ∈ Y i
j implies ǫn = (−1)i−j,

for i = n : if n − j odd, then Y n
j = ∅,

if n − j > 0 even, then Ȳ n
j = ∅.

If j = n, then Ȳ n
n = {id} ⊆ Ȳ n

n−1, so we can write

[W/WΩ̄n
] =

⋃

0≤j≤n

Ȳ n
j .

For the set [WΩ\W ], we can simply use the relation [W/WΩ]
−1

=
[WΩ\W ] and the previous lemma to obtain the following:

Lemma 5.4. Let 1 ≤ i ≤ n and let 0 ≤ j ≤ i. Denote by Xi
j the set

of all pǫ ∈W such that the following six conditions are satisfied:

(i) ǫp−1(k) = 1, for 1 ≤ k ≤ j;
(ii) p−1(k1) < p−1(k2), for 1 ≤ k1 < k2 ≤ j;
(iii) ǫp−1(k) = −1, for j + 1 ≤ k ≤ i;
(iv) p−1(k1) > p−1(k2), for j + 1 ≤ k1 < k2 ≤ i;
(v) ǫp−1(k) = 1, for i+ 1 ≤ k ≤ n− 1;
(vi) p−1(k1) < p−1(k2), for i+ 1 ≤ k1 < k2 ≤ n.
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Denote by X̄n
j the set of all pǫ ∈W which satisfy the same conditions

(for i = n), but instead of (iii), the condition

(iii’) ǫp−1(k) = −1, for j + 1 ≤ k ≤ n− 1, ǫp−1(n) = 1.

Then,

[WΩi
\W ] =

⋃

0≤j≤i

Xi
j ,

[WΩ̄n
\W ] =

⋃

0≤j≤n−1

X̄n
j .

✷

Let i1, i2 ∈ {1, ..., n}. For integers d, k such that

0 ≤ d ≤ min{i1, i2},

max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d,

we define a permutation pn(d, k)i1,i2 in the same way as in [T1]:

pn(d, k)i1,i2(j) =























j, for 1 ≤ j ≤ k;
j + i1 − k, for k + 1 ≤ j ≤ i2 − d;
(i1 + i2 − d+ 1) − j, for i2 − d + 1 ≤ j ≤ i2;
j − i2 + k, for i2 + 1 ≤ j ≤ i1 + i2 − d − k;
j, for i1 + i2 − d− k + 1 ≤ j ≤ n.

The conditions on d and k imply that p = pn(d, k)i1,i2 is well-defined.
For k ≥ 0, we set

1k = 1, 1, ..., 1 and −1k = −1,−1, ...,−1.

a) If i1, i2 ≤ n, 0 ≤ d ≤ min{i1, i2}, d even, max{0, (i1 + i2 − n)−
d} ≤ k ≤ min{i1, i2} − d, then we define

qn(d, k)
(0,0)
i1,i2

= pn(d, k)i1,i2(1i2−d,−1d, 1n−i2).

If i1, i2 < n, 0 ≤ d ≤ min{i1, i2}, d odd, max{0, (i1 + i2 −n)− d+
1} ≤ k ≤ min{i1, i2} − d, then we define

qn(d, k)
(0,0)
i1,i2

= pn(d, k)i1,i2(1i2−d,−1d, 1n−i2−1,−1).

b) If i1, i2 < n, 0 ≤ d ≤ min{i1, i2}, d even, k = i1 + i2−n−d ≥ 0,
then we define

qn(d, k)
(1,1)
i1,i2

= pn(d, k)i1,i2(1i2−d−1,−1d+1, 1n−i2−1,−1).
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c) If i1 ≤ n, i2 < n, 0 ≤ d ≤ min{i1, i2}, d odd, k = i1+i2−n−d ≥
0, then we define

qn(d, k)
(1,0)
i1,i2

= pn(d, k)i1,i2(1i2−d,−1d, 1n−i2−1,−1).

d) If i1 < n, i2 ≤ n, 0 ≤ d ≤ min{i1, i2}, d odd, k = i1+i2−n−d ≥
0, then we define

qn(d, k)
(0,1)
i1,i2

= pn(d, k)i1,i2(1i2−d−1,−1d+1, 1n−i2).

qn(d, k)
(0,0)
i1,i2

, qn(d, k)
(1,1)
i1,i2

, qn(d, k)
(1,0)
i1,i2

and qn(d, k)
(0,1)
i1,i2

are elements of
W.

Lemma 5.5. Let i1, i2 ∈ {1, ..., n}. Suppose that integers j1 and j2
satisfy 0 ≤ j1 ≤ i1 and 0 ≤ j2 ≤ i2. If Xi1

j1
∩ Y i2

j2
6= ∅, then one of the

following three conditions is satisfied:

(i) i1 − j1 = i2 − j2;
(ii) i1 − j1 = i2 − j2 + 1 even;
(iii) i2 − j2 = i1 − j1 + 1 even.

In that case, we have:

(a) If i1 − j1 = i2 − j2 is even, then
Xi1
j1
∩ Y i2

j2
=

{

qn(d, k)
(0,0)
i1,i2

| d = i1 − j1, max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d
}

(b) If i1 − j1 = i2 − j2 is odd, then
Xi1
j1
∩ Y i2

j2
=

{

qn(d, k)
(0,0)
i1,i2

| d = i1 − j1, max{0, (i1 + i2 − n) − d+ 1} ≤ k ≤ min{i1, i2} − d
}

∪
{

qn(d, k)
(1,1)
i1,i2

| d = i1 − j1 − 1, k = i1 + i2 − n− d ≥ 0
}

.

(c) If i1 − j1 = i2 − j2 + 1 is even, then

Xi1
j1
∩ Y i2

j2
=
{

qn(d, k)
(1,0)
i1,i2

| d = i2 − j2, k = i1 + i2 − n − d ≥ 0
}

.

(d) If i2 − j2 = i1 − j1 + 1 is even, then

Xi1
j1
∩ Y i2

j2
=
{

qn(d, k)
(0,1)
i1,i2

| d = i1 − j1, k = i1 + i2 − n − d ≥ 0
}

.

Proof. Let pǫ ∈W . Then pǫ ∈ Xi1
j1
∩Y i2

j2
if and only if the following

twelve conditions are satisfied:

(1) ǫp−1(l) = 1, for 1 ≤ l ≤ j1;
(2) p−1(l1) < p−1(l2), for 1 ≤ l1 < l2 ≤ j1;
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(3) ǫp−1(l) = −1, for j1 + 1 ≤ l ≤ i1;
(4) p−1(l1) > p−1(l2), for j1 + 1 ≤ l1 < l2 ≤ i1;
(5) ǫp−1(l) = 1, for i1 + 1 ≤ l ≤ n− 1;
(6) p−1(l1) < p−1(l2), for i1 + 1 ≤ l1 < l2 ≤ n;
(7) ǫl = 1, for 1 ≤ l ≤ j2;
(8) p(l1) < p(l2), for 1 ≤ l1 < l2 ≤ j2;
(9) ǫl = −1, for j2 + 1 ≤ l ≤ i2;

(10) p(l1) > p(l2), for j2 + 1 ≤ l1 < l2 ≤ i2;
(11) ǫl = 1, for i2 + 1 ≤ l ≤ n − 1;
(12) p(l1) < p(l2), for i2 + 1 ≤ l1 < l2 ≤ n.

Suppose that there exists pǫ ∈ Xi1
j1
∩ Y i2

j2
. Then conditions (1),(3)

and (5) give that the number of −1’s which appear in ǫ must be i1 − j1
if i1 − j1 is even, or i1 − j1 + 1 if i1 − j1 is odd. Conditions (7),(9) and
(11) give that the number of −1’s which apear in ǫ must be i2 − j2 if
i2 − j2 is even, or i2 − j2 + 1 if i2 − j2 is odd. We conclude that the
difference between i1 − j1 and i2 − j2 is at most 1, and, if they are not
equal, the bigger one is even.Thus, we get conditions (i), (ii) and (iii)
from the lemma.

a) If i1 − j1 = i2 − j2 even, then ǫn = 1, ǫp−1(n) = 1, so pǫ satisfies
conditions (1)-(12) from Lemma 4.5 [T1], which gives the statement.

b) Let i1 − j1 = i2 − j2 odd. If i1 = n or i2 = n, then there is no
pǫ ∈W which satisfies conditions (1)-(12), so Xi1

j1
∩ Y i2

j2
= ∅.

Suppose i1, i2 < n. From (7),(9) and (11), we conclude that

ǫ = (1j2 ,−1i2−j2 , 1n−i2−1,−1).

Conditions (3),(7),(9) and (11) imply

p([j2 + 1, i2]N ∪ {n}) = [j1 + 1, i1]N ∪ {n}.

If p(n) = n, then conditions (1)-(12)restricted to the set {1, . . . , n−1}
are the same as in Lemma 4.5[T1]. It follows that p = pn(d, k)i1,i2 and
i1 + i2 − d − k + 1 ≤ n, i.e., k ≥ i1 + i2 − n− d+ 1.

If p(n) 6= n, then from (4) and (10) we see that

p(j2 + 1) = n,

p−1(j1 + 1) = n,

p([j2 + 2, i2]N) = [j1 + 2, i1]N.
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Set d = i2 − j2 − 1. By (10), p is order-reversing as a mapping p :
[j2 + 2, i2]N → [j1 + 2, i1]N. It follows that

p(j) = i1 − (j − j2 − 2) = (i1 + i2 − d + 1) − j, for i2 − d + 1 ≤ j ≤ i2.

From p(j2 + 1) = n we have p−1(n) = j2 + 1. Together with (6), this
implies

p−1([i1 + 1, n− 1]N) ⊆ [1, j2]N.

In the same, way we get

p([i2 + 1, n − 1]N) ⊆ [1, j1]N.

Let K = p−1([i1 +1, n−1]N), L = [1, j2]N \K. Suppose that L 6= ∅.
Since p(K ∪ {j2 + 1}) = [i1 + 1, n]N, we have p(K) > p(L), and from
(8) we see that K > L, (i.e., p > q, ∀p ∈ K, ∀q ∈ L). Thus, there
exists k ∈ {1, ..., j2} such that

p−1([i1 + 1, n− 1]N) = [k + 1, j2]N.

If L = ∅, we put k = 0, so the above condition is satisfied. Now, we
have

p−1([i1 + 1, n]N) = [k + 1, j2 + 1]N = [k + 1, i2 − d]N,(*)

n− i1 − 1 = i2 − d− k − 1,

k = i1 + i2 − n− d ≥ 0.

In the same way, we get

p([i2 + 1, n]N) = [k + 1, i1 − d]N.

From (12), we obtain

p(j) = k + 1 + j − i2 − 1 = j − i2 + k, i2 + 1 ≤ j ≤ n

By (∗), we have

p([k + 1, i2 − d]N) = [i1 + 1, n]N,

and from (6) we see that

p(j) = i1 + 1 + j − k − 1 = j + i1 − k, k + 1 ≤ j ≤ i2 − d.

It remains to determine p on [1, k]N. From the above observations, we
get

p([1, k]N) = [1, k]N,

so by (8), we have

p(j) = j, for 1 ≤ j ≤ k.

We conclude that p = pn(d, k)i1,i2.
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It remains to prove that q = qn(d, k)
(0,0)
i1,i2

∈ Xi1
j1

∩ Y i2
j2

when d =
i1 − j1 = i2 − j2 and

max{0, (i1 + i2 − n) − d} < k ≤ min{i1, i2} − d,

and q′ = qn(d, k)
(1,1)
i1,i2

∈ Xi1
j1
∩Y i2

j2
when d = i1 − j1 − 1 = i2 − j2 − 1 and

k = i1 + i2 − n− d ≥ 0.
One sees directly from the definition of q and q′ that conditions (7)-

(12) are satisfied. In the same way, one sees that conditions (1)-(6) are
satisfied.

c) Let i1 − j1 = i2 − j2 + 1 even. If i2 = n, then there is no pǫ ∈W
which satisfies conditions (1)-(12), so Xi1

j1
∩ Y i2

j2
= ∅.

Suppose that i2 < n. Set d = i2 − j2. From (1),(3),(5),(7) and (9),
we see that

ǫn = −1, ǫp−1(n) = 1,

ǫ = (1i2−d,−1d, 1n−i2−1,−1),

p([j2 + 1, i2]N ∪ {n}) = [j1 + 1, i1]N.

From (4), we get

p−1(j1 + 1) = n,

p([j2 + 1, i2]N) = [j1 + 2, i1]N,

p(j) = i1 − (j − j2 − 1) = (i1 + i2 − d + 1) − j, i2 − d+ 1 ≤ j ≤ i2.

In the same way as in (b), it follows from p(n) = j1 + 1 that

p([i2 + 1, n− 1]N) = [k + 1, j1]N, where k = i1 + i2 − n− d ≥ 0,

and

p(j) = j − i2 + k, i2 + 1 ≤ j ≤ n.

We conclude that

p([1, i2 − d]N) = [1, k]N ∪ [i1 + 1, n]N.

From (8), we have

p([1, k]N) = [1, k]N,

p([k + 1, i2 − d]N) = [i1 + 1, n]N,

and

p(j) = j, 1 ≤ j ≤ k,

p(j) = i1 + 1 + j − k − 1 = j + i1 − k, k + 1 ≤ j ≤ i2 − d.

Therefore, p = pn(d, k)i1,i2.
The rest of proof is same as in (b).
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(d) Analogous to (c). �

For i1 = n, i2 ≤ n, 0 ≤ d ≤ i2, d odd, k = i2 − d, we define

qn(d, k)
(−1,−1)
n,i2

= pn(d, k)i1,i2(1i2−d+1,−1d−1, 1n−i2).

For i1 = n, i2 < n, 0 < d ≤ i2, d even, k = i2 − d, we define

qn(d, k)
(±1,−1)
n,i2

= pn(d, k)i1,i2(1i2−d+1,−1d−1, 1n−i2−1,−1).

For i1 = n, i2 < n, d = 0, k = i2, we define

qn(d, k)
(±1,−1)
n,i2

= pn(d, k)i1,i2.

For i1 = i2 = n, 0 < d ≤ n, d even, k = n− d, we define

qn(d, k)
(−2,−2)
n,n = pn(d, k)n,n(1n−d+1,−1d−2, 1).

For i1 = i2 = n, d = 0, k = n, we define

qn(d, k)
(−2,−2)
n,n = pn(d, k)n,n.

An argument analogous to that for Lemma 5.5 gives

Lemma 5.6. Let i2 ∈ {1, ..., n}. Suppose that integers j1 and j2 satisfy
0 ≤ j1 ≤ n − 1 and 1 ≤ j2 ≤ i2. If X̄n

j1
∩ Y i2

j2
6= ∅, then one of the

following two conditions is satisfied:

(i) (n− 1) − j1 = i2 − j2 even,
(ii) (n− 1) − j1 = i2 − j2 + 1 even.

In that case, we have:

(a) If (n − 1) − j1 = i2 − j2 > 0 is even, then

X̄n
j1
∩ Y i2

j2
=
{

qn(d, k)
(−1,−1)
n,i2

| d = n− j1, k = i2 − d
}

,

and for (n− 1) − j1 = i2 − j2 = 0, we have
X̄n
j1
∩ Y i2

j2
=

{

qn(d, k)
(−1,−1)
n,i2

| d = 1, k = i2 − d
}

∪
{

qn(d, k)
(±1,−1)
n,i2

| d = 0, k = i2 − d
}

.

(b) If (n − 1) − j1 = i2 − j2 + 1 is even, then n− 1 − j1 > 0 and

X̄n
j1
∩ Y i2

j2
=
{

qn(d, k)
(±1,−1)
n,i2

| d = n − j1 − 1, k = i2 − d
}

.
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Proposition 5.7. Let i1, i2 ∈ {1, ..., n}. Then,
[

WΩi1
\W/WΩi2

]

=

=













⋃

0≤d≤
min{i1,i2}
d−even





{

qn(d, k)
(0,0)
i1,i2

| max{0, (i1 + i2 − n− d)} ≤ k ≤ min{i1, i2} − d
}

∪
{

qn(d, k)
(1,1)
i1,i2

| k = i1 + i2 − n− d ≥ 0
}

















∪













⋃

0≤d≤
min{i1,i2}
d−odd











{

qn(d, k)
(0,0)
i1,i2

| max{0, (i1 + i2 − n− d) + 1} ≤ k ≤ min{i1, i2} − d
}

∪
{

qn(d, k)
(1,0)
i1,i2

| k = i1 + i2 − n− d ≥ 0
}

∪
{

qn(d, k)
(0,1)
i1,i2

| k = i1 + i2 − n− d ≥ 0
}























Particularly:
(a) If i1 = n, i2 < n, then
[

WΩn\W/WΩi2

]

=

=







⋃

0≤d≤i2
d−even

{

qn(d, k)
(0,0)
n,i2

| k = i2 − d
}






∪







⋃

0≤d≤i2
d−odd

{

qn(d, k)
(1,0)
n,i2

| k = i2 − d
}






.

(b) If i1 < n, i2 = n, then
[

WΩi1
\W/WΩn

]

=

=







⋃

0≤d≤i1
d−even

{

qn(d, k)
(0,0)
i1,n

| k = i1 − d
}






∪







⋃

0≤d≤i1
d−odd

{

qn(d, k)
(0,1)
i1,n

| k = i1 − d
}






.

(c) If i1 = i2 = n, then

[WΩn\W/WΩn ] =
⋃

0≤d≤n
d−even

{qn(d, k)
(0,0)
n,n | k = n− d}.

Proof. We know that [WΘ\W/WΩ] = [WΘ\W ]∩[W/WΩ] , for Θ,Ω ⊂
∆. From Lemmas 5.3 and 5.4, we have

[

WΩi1
\W/WΩi2

]

=
[

WΩi1
\W
]

∩
[

W/WΩi2

]

=

(

⋃

0≤j1≤i1

Xi1
j1

)

∩

(

⋃

0≤j2≤i2

Y i2
j2

)

=
⋃

0≤j1≤i1

⋃

0≤j2≤i2

(

Xi1
j1
∩ Y i2

j2

)

.
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Now, Lemma 5.5 tells us when Xi1
j1
∩ Y i2

j2
is nonempty and gives the

proposition.

(a) If i1 = n, i2 < n, then qn(d, k)
(1,1)
n,i2

and qn(d, k)
(0,1)
n,i2

are not defined

and qn(d, k)
(0,0)
n,i2

is not defined for d odd. For d even, the inequality
max{0, (i1+i2−n)−d} ≤ k ≤ min{i1, i2}−d becomesmax{0, i2−d} ≤
k ≤ min{i1, i2} − d, and its only solution is k = i2 − d.

(b),(c) Analogously.
�

In the same way, we get

Proposition 5.8. Let i2 ∈ {1, ..., n}. Then,
(i)

[

WΩ̄n
\W/WΩi2

]

=






⋃

0≤d≤i2
d−odd

{

qn(d, k)
(−1,−1)
n,i2

| k = i2 − d
}






∪







⋃

0≤d≤i2
d−even

{

qn(d, k)
(±1,−1)
n,i2

| k = i2 − d
}






.

(ii) [WΩ̄n
\W/WΩ̄n

] =
⋃

0≤d≤n
d−even

{

qn(d, k)
(−2,−2)
n,n | k = n− d

}

.

In particular, for i2 = n (i) reduces to

[WΩ̄n
\W/WΩn ] =

⋃

0≤d≤n
d−odd

{

qn(d, k)
(−1,−1)
n,n | k = n− d

}

.

Lemma 5.9. Fix i1, i2 ∈ {1, 2, . . . , n}. Suppose that integers d, d′ and
k, k′ satisfy the following conditions:

0 ≤ d, d′ ≤ min{i1, i2},

max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d,

max{0, (i1 + i2 − n) − d′} ≤ k′ ≤ min{i1, i2} − d′.

Then,

(i) (pn(d, k)i1,i2)
−1 = pn(d, k)i2,i1.

(ii)
(

qn(d, k)
(0,0)
i1,i2

)−1

= qn(d, k)
(0,0)
i2,i1

,
(

qn(d, k)
(1,1)
i1,i2

)−1

= qn(d, k)
(1,1)
i2,i1

,
(

qn(d, k)
(1,0)
i1,i2

)−1

= qn(d, k)
(0,1)
i2,i1

.

(iii) Let w = qn(d, k)
(∗)
i1,i2

, w′ = qn(d
′, k′)

(∗∗)
i1,i2

, where (∗), (∗∗) ∈ {(0, 0), (1, 1),
(1, 0), (0, 1)}. If w = w′, then (∗) = (∗∗), d = d′, k = k′.
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Proof. The proofs of (i) and (ii) are straightforward calculations
(also, cf. Lema 4.7 [T1]).

(iii) Write w = pǫ and w′ = p′ǫ′, where p = pn(d, k)i1,i2 and p′ =
pn(d

′, k′)i1,i2.
Suppose that (∗) = (∗∗), and that d and d′ are both odd or both

even. If we compare the numbers of −1’s which appear in ǫ and ǫ′,
we get d = d′. Therefore, pn(d, k)i1,i2 = pn(d, k

′)i1,i2. The definition
of pn(d, k)i1,i2 implies that k is the maximal integer which satisfies
0 ≤ k ≤ min{i1, i2} − d and pn(d, k)i1,i2(l) = l for all 1≤ l ≤ k. This
implies k = k′.

We are now going to prove that in other cases we cannot have w = w′.

a) Let (∗) = (0, 0), d even.
Suppose that (∗∗) = (0, 0), d′ odd. Then w = w′ implies n− i2 =

0, n− i2−1 = 0, which is impossible. We can use the same reasoning in
the cases (∗∗) = (1, 1) and (∗∗) = (1, 0). In the case (∗∗) = (0, 1), we
consider w−1 and (w′)−1. They are of type (0, 0) and (1, 0), so w−1 6=
(w′)−1, which implies w 6= w′.

b) Let (∗) = (0, 0), d odd. Then i1, i2 < n.
Suppose that (∗∗) = (1, 1). Then w = w′ implies d = d′ + 1, k =

k′ = i1 + i2 − n− d′. Now we have

i1 + i2 − d− k = i1 + i2 − d− (i1 + i2 − n− d+ 1) = n− 1,

i1 + i2 − d′ − k = n,

and by definition

pn(d, k)i1,i2(n) = n, pn(d
′, k)i1,i2(n) = n− i2 + k = i1 − d′ < n,

which contradicts the assumption w = w′.
If we suppose (∗∗) = (1, 0), then we get d = d′, k = k′. But the

condition for w is k > i1 + i2 − n − d, and for w′ k = i1 + i2 − n − d.
This is again a contradiction.

In the case (∗∗) = (0, 1), the equality w = w′ implies n− i2 = 0 and
n− i2 − 1 = 0, which is impossible.

c) Let (∗) = (1, 1), d even.
Suppose that (∗∗) = (1, 0). Then w = w′ implies d′ = d+ 1, k = k′.

But we have k = i1+i2−n−d and k′ = i1+i2−n−d′ = i1+i2−n−d−1,
which is impossible.

The assumption (∗∗) = (0, 1) gives n − i2 − 1 = 0 and n − i2 = 0, a
contradiction.



24 DUBRAVKA BAN

d) Let (∗) = (1, 0), (∗∗) = (0, 1). Then w = w′ implies n− i2−1 = 0,
n− i2 = 0, which is impossible.

�

Define qn(d, k)i1,i2 = pn(d, k)i1,i2(1i2−d,−1d, 1n−i2). This is an auto-
morphism of Σ. If d is even, then qn(d, k)i1,i2 is an element of W.

Recall that for i ∈ {1, . . . , n}, we defined

Ωi =

{

∆\{αi}, i 6= n− 1,
∆\{αn, αn−1}, i = n− 1,

, Ω̄n = ∆\{αn−1}, Ω0 = ∆.

Lemma 5.10. Let w = qn(d, k)i1,i2 . Then,

Ωi1 ∩ w(Ωi2) = Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωi1+i2−d−k.

Proof. The conditions on d and k imply

0 ≤ k ≤ i1 − d ≤ i1 ≤ i1 + i2 − d − k ≤ n,

0 ≤ k ≤ i2 − d ≤ i2 ≤ i1 + i2 − d − k ≤ n.

Set

βi = αi, i = 1, . . . , n− 1,

βn = en.

Then Γ = {β1, . . . , βn} is the set of simple roots of the root system of
type Bn, into which our root system embeds. We shall use the following
formula, proved in [T1]:

(Γ \ {βi1}) ∩ w(Γ \ {βi2}) = Γ \ {βl |l ∈ {k, i1 − d, i1, i1 + i2 − d− k} \ {0}} .
(*)

Since we have

Γ \ {βn} = ∆ \ {αn},

(Γ \ {βj}) \ {βn} = Ωj \ {αn}, (for j 6= 0),

it follows that

(Ωi1 ∩ w(Ωi2)) \ {αn, w(αn)} = (Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωi1+i2−d−k) \ {αn, w(αn)}.
(**)

We consider several cases.

(a) Let i1, i2 < n− 1.
First, suppose that i1+i2−d−k < n−1. Then k, i1−d < n−1. From

the definition of w = qn(d, k)i1,i2, we get w(en−1) = en−1, w(en) = en,
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so w(αn−1) = αn−1, w(αn) = αn. We apply this to formula (*) and we
get

(∆ \ {αi1}) ∩ w(∆ \ {αi2}) = ∆ \ {αl |l ∈ {k, i1 − d, i1, i1 + i2 − d− k} \ {0}} .

Since i1, i2, k, i1 − d, i1 + i2 − d− k < n− 1, this is exactly the formula
from the lemma.

Next, we consider the case when i1 + i2 − d − k = n− 1. Then,

w−1(αn−1) = w−1(en−1 − en) = pn(d, k)i2,i1(en−1 − en) = ei2−d − en.

This is an element of ∆ if i2 − d = n − 1, which is impossible since
i2 < n − 1. So, w−1(αn−1) /∈ ∆ and αn−1 /∈ w(Ωi2). In the same way,
we see that αn /∈ w(Ωi2). Hence,

Ωi1 ∩ w(Ωi2) ⊆ ∆ \ {αn−1, αn} = Ωn−1.

Similarly, w(αn) /∈ ∆. Now from (**), we have

(Ωi1 ∩ w(Ωi2)) \ {αn} = (Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωi1+i2−d−k) \ {αn}.

Since Ωi1 ∩ w(Ωi2) ⊆ Ωn−1 and i1 + i2 − d − k = n− 1, if we intersect
the above equality with Ωn−1, we get the formula we need.

It remains to consider the case when i1 + i2 − d − k = n. We have

w−1(αn) = ei2−d−1 + ei2−d,

and this is not in ∆ because i2 < n − 1. Hence, αn /∈ w(Ωi2). Also, we
have

w(αn) = ei1−d−1 + ei1−d,

and again this is not in ∆. Now, the relation (**) becomes

Ωi1 ∩ w(Ωi2) = (Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωi1+i2−d−k) \ {αn}

= Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωi1+i2−d−k ,

since Ωi1+i2−d−k = Ωn = ∆ \ {αn}.

(b) Let i1 ≥ n − 1. If i1 + i2 − d − k = n − 1 (this is possible for
i1 = n− 1), then we have

w(αn) = w(en−1 + en) = en−1−i2+k + en.

If i1 + i2 − d − k = n, then

w(αn) = w(en−1 + en) = en−1−i2+k + en−i2+k.

Anyway, w(αn) ∈ ∆ impliesw(αn) = αn, and the relation (**) becomes

(Ωi1 ∩ w(Ωi2)) \ {αn} = (Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωi1+i2−d−k) \ {αn}.

Since αn /∈ Ωi1, the relation we want follows immediately.
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(c) Now, consider the case when i1 < n− 1, i2 = n− 1.
First, suppose that i1 + i2 − d − k = n − 1. If d = 0, then w(αn) =

w(en−1 + en) = en−1 + en = αn, so αn /∈ w(Ωi2) and w(αn) = αn /∈ Ωi2 .
If d > 0, then

w−1(αn) = w−1(en−1 + en) = pn(d, k)i2,i1(en−1 + en) = ei2−d + en /∈ ∆,

w(αn) = w(en−1 + en) = pn(d, k)i1,i2(−en−1 + en) = −ei1−d+1 + en /∈ ∆.

Anyway, the relation (**) becomes

Ωi1 ∩ w(Ωi2) = (Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωi1+i2−d−k) \ {αn},

and since i1 + i2 − d− k = n− 1, we are done.
Now, suppose that i1 + i2 − d− k = n.Then

w−1(αn) = pn(d, k)i2,i1(en−1 + en) = ei2−d−1 + ei2−d,

and this is not in ∆ since i2 − d ≤ n− 1.
If d = 0, then

w(αn) = w(en−1 + en) = pn(d, k)i1,i2(en−1 + en) = en + ei1 /∈ ∆,

and the relation (**) gives the result.
If d > 0, then

w(αn) = w(en−1 + en) = pn(d, k)i1,i2(−en−1 + en) = −ei1−d+1 + ei1−d = αi1−d.

Now from (**), we have

(Ωi1 ∩ w(Ωi2)) \ {αi1−d} = (Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωi1+i2−d−k) \ {αn, αi1−d}.

But αi1−d /∈ w(Ωi2) since αi1−d = w(αn). Also, αn /∈ Ωi1+i2−d−k and
αi1−d /∈ Ωi1−d. The result follows.

(d) It remains to consider the case i1 < n − 1, i2 = n. Then i1 +
i2 − d− k = n and we have

w−1(αn) = pn(d, k)i2,i1(en−1 + en) = en−1−i1+k + en−i1+k = en−1−d + en−d.

We see that w−1(αn) /∈ ∆, for d > 0, and w−1(αn) = αn, for d = 0.
Since i2 = n, in both cases we have αn /∈ w(Ωi2).

Now for d > 1, we have

w(αn) = pn(d, k)i1,i2(−en−1 − en),

and for d = 1

w(αn) = pn(d, k)i1,i2(en−1 − en) = en − ei1,

and in both cases w(αn) /∈ ∆. Hence, relation (**) becomes

Ωi1 ∩ w(Ωi2) = (Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωi1+i2−d−k) \ {αn},

and the result follows from the condition i1 + i2 − d − k = n.
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✷

Lemma 5.11. (i) If w = qn(d, k)
(0,0)
i1,i2

or w = qn(d, k)
(1,0)
i1,i2

, then

Ωi1 ∩ w(Ωi2) =
⋂

j∈Π

Ωj where Π = {k, i1 − d, i1, i1 + i2 − d− k}\{0},

or, equivalently,

Ωi1 ∩ w(Ωi2) = Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωi1+i2−d−k.

(ii) If w = qn(d, k)
(1,1)
i1,i2

or w = qn(d, k)
(0,1)
i1,i2

, then

Ωi1 ∩ w(Ωi2) = Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ω̄n,

or, equivalently,

Ωi1 ∩ w(Ωi2) = s

(

⋂

j∈Π

Ωj

)

Π = {k, i1 − d, i1, i1 + i2 − d − k = n},

where s = (1n−1,−1) denotes the automorphism of Σ which inter-
changes αn−1 and αn.

Proof. (a) Let w = qn(d, k)
(0,0)
i1,i2

. If d is even, then w = qn(d, k)i1,i2 ,
and the statement follows from Lemma 5.10.

If d is odd, then i1, i2 < n. Now w = w′s, where w′ = qn(d, k)i1,i2 .
Note that s(Ωi2) = Ωi2 for i2 < n, so we have

Ωi1 ∩ w(Ωi2) = Ωi1 ∩ w
′s(Ωi2) = Ωi1 ∩ w

′(Ωi2).

The result follows from Lemma 5.10.
(b) Let w = qn(d, k)

(1,1)
i1,i2

. Then, i1, i2 < n, i1 + i2 − d − k = n and
w = sw′s, where w′ = qn(d, k)i1,i2. Now, we have

Ωi1 ∩ w(Ωi2) = Ωi1 ∩ sw
′s(Ωi2) = s(Ωi1 ∩ w

′s(Ωi2)) =

= s(Ωi1 ∩ w
′(Ωi2)) = (Lemma 5.10)

= s(Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωn) =

= Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ω̄n.

(c) Let w = qn(d, k)
(1,0)
i1,i2

. Then, i2 < n and w = w′s, where w′ =
qn(d, k)i1,i2 . It follows that

Ωi1 ∩ w(Ωi2) = Ωi1 ∩ w
′s(Ωi2) = Ωi1 ∩ w

′(Ωi2)

and Lemma 5.10 gives the result.
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(d) Let w = qn(d, k)
(0,1)
i1,i2

. Then, i1 < n and w = sw′, where w′ =
qn(d, k)i1,i2 . Now, we have

Ωi1 ∩ w(Ωi2) = Ωi1 ∩ sw
′(Ωi2) = s(Ωi1 ∩ w

′(Ωi2)) =

= (Lemma 5.10) = s(Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ωn) =

= Ωk ∩ Ωi1−d ∩ Ωi1 ∩ Ω̄n.

✷

In the same way, we get

Lemma 5.12. Let w = qn(d, k)
(−1,−1)
n,i2

or w = qn(d, k)
(±1,−1)
n,i2

. Then,

Ω̄n ∩ w(Ωi2) = s(Ωk ∩ Ωn−d ∩ Ωn).

6. Orthogonal group O(2n, F )

The orthogonal group O(2n, F ), n ≥ 1, is the group

O(2n, F ) = {X ∈ GL(2n, F )| τXX = I2n} .

O(2n, F ) has two connected components. The first is SO(2n, F ) =
{X ∈ O(2n, F ) | detX = 1}, and the second is {X ∈ O(2n, F ) |
detX = −1}. We have

O(2n, F ) = SO(2n, F ) ∪ s · SO(2n, F ),

where

s =









I
0 1
1 0

I









.

Let ∆ denote the set of simple roots of SO(2n, F ), W the Weyl
group. Let α = (n1, ..., nk) be an ordered partition of m ≤ n. Denote
by Pα = MαUα the standard parabolic subgroup of SO(2n, F ) with
Levi factor Mα

∼= GL(n1, F )× · · ·×GL(nk, F )×SO(2(n−m), F ).We
shall consider the following subgroups of O(2n, F ):

Qα =

{

Pα ∪ sPα, for m < n,
Pα, for m = n.

It follows that Qα = NαUα, where

Nα =

{

Mα ∪ sMα, for m < n,
Mα, for m = n.

We have

Nα =
{

diag(g1, ..., gk, h,
τg−1
k , ..., τg−1

1 ) | gi ∈ GL(ni, F ), h ∈ O(2(n −m), F )
}

,
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so

Nα
∼= GL(n1, F )× · · · ×GL(nk, F )× O(2(n −m), F ).

Let α = (i). The subgroups N = Nα and V = Uα are closed, N
normalises V and N∩V = {e} , so by the first section, we have functors
iV,1 and rV,1. Define iG,N = iV,1 and rN,G = rV,1. Hence,

iG,N : AlgN → AlgG,
rN,G : AlgG→ AlgN.

Let α = (i1), β = (i2), P = Qα = MU, Q = Qβ = NV.Let σ be an
admissible representation of O(2n, F ). We consider

rN,G ◦ iG,M(σ).

By Theorem 2.1, we can find a composition series of rN,G ◦ iG,M (σ). We
need to calculate representatives of

P \ O(2n, F ) / Q.

Lemma 6.1. Let i1, i2 ∈ {1, ..., n}, α = (i1), β = (i2), P = Qα =
MU, Q = Qβ = NV.

(i) {qn(d, k)i1,i2 | 0 ≤ d ≤ min{i1, i2}, max{0, (i1 + i2 − n) − d} ≤ k ≤
≤ min{i1, i2} − d} is a set of representatives of P \ O(2n, F ) / Q.

(ii) Let w = qn(d, k)i1,i2. The groups w−1(P ), w−1(M) and w−1(U) are
decomposable with respect to (N, V ), and the groups w(Q), w(N)
and w(V ) are decomposable with respect to (M,U).

Proof. (a) Suppose that i1, i2 < n. Then,

P = Qα = Pα ∪ sPα, Q = Qβ = Pβ ∪ sPβ .

Let x ∈ SO(2n, F ). Then,

PxsQ = (Pα ∪ sPα) x (sPβ ∪ Pβ) = PxQ,

so [x] = [xs]. Analogously, [x] = [sx]. Thus, we can choose representa-
tives from SO(2n, F ).

Let x, y ∈ SO(2n, F ) with [x] = [y]. Now, we have

PxQ = PyQ,

(Pα ∪ sPα) x (sPβ ∪ Pβ) = (Pα ∪ sPα) y (sPβ ∪ Pβ),

(PαxPβ) ∪ (sPαxPβ) ∪ (PαxsPβ) ∪ (Pαsxs
−1Pβ) =

(PαyPβ) ∪ (sPαyPβ) ∪ (PαysPβ) ∪ (Pαsys
−1Pβ).

It follows that

(PαxPβ) ∪ (Pαsxs
−1Pβ) = (PαyPβ) ∪ (Pαsys

−1Pβ),
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so

PαxPβ = PαyPβ or PαxPβ = Pαsys
−1Pβ .

We know that
[

WΩi1
\W/WΩi2

]

is a set of representatives of Pα \ SO(2n, F ) / Pβ .
By the above considerations, a set of representatives of P \O(2n, F ) / Q
can be chosen from the set

[

WΩi1
\W/WΩi2

]

in the following way: we

take all elements which satisfy PαwPβ = Pαsws
−1Pβ , and from the

remaining set we choose w or a representative of Pαsws
−1Pβ .

For w = qn(d, k)
(0,0)
i1,i2

∈
[

WΩi1
\W/WΩi2

]

and i1 + i2 − d − k < n, we

have w = sws−1. For i1 + i2 − d − k = n, we have

sqn(d, k)
(0,0)
i1,i2

s−1 = qn(d, k)
(1,1)
i1,i2

, if d is even,

sqn(d, k)
(1,0)
i1,i2

s−1 = qn(d, k)
(0,1)
i1,i2

, if d is odd.

We conclude that
{

qn(d, k)
(0,0)
i1,i2

| 0 ≤ d ≤ min{i1, i2}, for d even max{0, (i1 + i2 − n) − d} ≤ k ≤

≤ min{i1, i2} − d, max{0, (i1 + i2 − n) − d} < k ≤ min{i1, i2} − d for d odd}

∪
{

qn(d, k)
(1,0)
i1,i2

| 0 ≤ d ≤ min{i1, i2}, d odd, k = i1 + i2 − n− d ≥ 0
}

is a set of representatives of P \ O(2n, F ) / Q. We have

qn(d, k)i1,i2 =











qn(d, k)
(0,0)
i1,i2

, for d even,

qn(d, k)
(0,0)
i1,i2

s, for d odd and i1 + i2 − d− k < n,

qn(d, k)
(1,0)
i1,i2

s, for d odd and i1 + i2 − d− k = n.

Then, from the relation [x] = [sx], it follows that the set

{qn(d, k)i1,i2 | 0 ≤ d ≤ min{i1, i2}, max{0, (i1 + i2 − n) − d} ≤ k ≤

≤ min{i1, i2} − d}

is a set of representatives of P \ O(2n, F ) / Q.
Let w = qn(d, k)i1,i2 . We shall show that the group w(Q) is decom-

posable with respect to (M,U).
If i1 + i2 − d− k < n, then w and s commute, so

w(s) = wsw−1 = s.

Then,

w(Q) ∩ (MU) = wQw−1 ∩ (MU) = w(Pβ ∪ sPβ) ∩ (MαUα ∪ sMαUα) =

= [w(Pβ) ∩MαUα] ∪ s [w(Pβ) ∩MαUα] =

(because w(Pβ) is decomposable with respect to (Mα, Uα))

= [(w(Pβ) ∩Mα)(w(Pβ) ∩ Uα)] ∪ s [(w(Pβ) ∩Mα)(w(Pβ) ∩ Uα)]

= [(w(Pβ) ∩Mα) ∪ s(w(Pβ) ∩Mα)] [w(Pβ) ∩ Uα] .
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On the other side,

(w(Q) ∩M)(w(Q) ∩ U) =

= [(w(Pβ) ∪ s · w(Pβ)) ∩ (Mα ∪ sMα)] [(w(Pβ) ∪ s · w(Pβ)) ∩ Uα]

= [(w(Pβ) ∩Mα) ∪ s · (w(Pβ) ∩Mα)] [w(Pβ) ∩ Uα] ,

so w(Q) is decomposable with respect to (M,U).
If i1 + i2 − d− k = n, then

w(Q) ∩ P = w(Pβ ∪ sPβ) ∩ (Pα ∪ sPα) = (w(Pβ) ∩ Pα) ∪ (w(sPβ) ∩ sPα).

It can be shown that

w(sPβ) ∩ sPα = ∅,

which implies w(sPβ) ∩ sMα = ∅. It follows that

w(Q) ∩ P = w(Pβ) ∩ Pα,

w(Q) ∩M = w(Pβ) ∩Mα.

If w ∈
[

WΩi1
\W/WΩi2

]

, we have

w(Q) ∩MU = w(Pβ) ∩ Pα = w(Pβ) ∩MαUα =

(since w(Pβ) is decomposable with respect to (Mα, Uα))

= (w(Pβ) ∩Mα)(w(Pβ) ∩ Uα) = (w(Q) ∩M)(w(Q) ∩ U).

If w /∈
[

WΩi1
\W/WΩi2

]

,then w′ = ws ∈
[

WΩi1
\W/WΩi2

]

and

w′(Pβ) = w′Pβ(w
′)−1 = wsPβsw

−1 = wPβw
−1.

Now, we have

w(Q) ∩MU = w(Pβ) ∩ Pα = w′(Pβ) ∩MαUα =

= (w′(Pβ) ∩Mα)(w
′(Pβ) ∩ Uα) = (w(Q) ∩M)(w(Q) ∩ U).

Hence, w(Q) is decomposable with respect to (M,U).
For the other groups, the proof is similar.

(b) Let i1 = n, i2 < n. For x ∈ SO(2n, F ), we have

PxsQ = Pα x (sPβ ∪ Pβ) = PxQ,

so [x] = [xs] (but the classes [x] and [sx] are not the same in general).
Hence, we can choose representatives from SO(2n, F ) again. Let x, y ∈
SO(2n, F ) and [x] = [y]. Now,

Pα x (sPβ ∪ Pβ) = Pα y (sPβ ∪ Pβ),

(PαxPβ) ∪ (PαxsPβ) = (PαyPβ) ∪ (PαysPβ).
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It follows that

PαxPβ = PαyPβ ,

so
[

WΩi1
\W/WΩi2

]

is a set of representatives of P \ O(2n, F ) / Q.
Recall that

[

WΩi1
\W/WΩi2

]

=







⋃

0≤d≤i2
d−even

{

qn(d, k)
(0,0)
n,i2

| k = i2 − d
}







∪







⋃

0≤d≤i2
d−odd

{

qn(d, k)
(1,0)
n,i2

| k = i2 − d
}






.

Since

qn(d, k)n,i2 =

{

qn(d, k)
(0,0)
n,i2

, for d even,

qn(d, k)
(1,0)
n,i2

s, for d odd,

the equality [x] = [xs] implies that

{qn(d, k)n,i2 | 0 ≤ d ≤ min{i1, i2}, max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d}

is a set of representatives of P \ O(2n, F ) / Q.

Let w = qn(d, k)n,i2. Then, w ∈
[

WΩi1
\W/WΩi2

]

or ws ∈
[

WΩi1
\W/WΩi2

]

.
Since i2 < n, we have (ws)(Pβ) = w(Pβ). Now,

w(Q) ∩MU = w(Pβ ∪ sPβ) ∩MαUα = w(Pβ) ∩MαUα =

= (w(Pβ) ∩Mα)(w(Pβ) ∩ Uα) = (w(Q) ∩M)(w(Q) ∩ U).

The proof for w(N) and w(V ) is similar.
If w ∈

[

WΩi1
\W/WΩi2

]

, then it is easy to show the statement for

w−1(P ). If ws ∈
[

WΩi1
\W/WΩi2

]

, then

w−1(P ) ∩ NV = w−1(Pα) ∩ (Pβ ∪ sPβ) = w−1(Pα) ∩ (Pβ) =

= s · (sw−1(Pα) ∩ (Pβ)) · s =

(since (sw−1)(Pα) is decomposable with respect to (Mβ , Uβ))

= s · ((sw−1)(Pα) ∩Mβ)((sw
−1)(Pα) ∩ Uβ) · s

= (w−1(Pα) ∩Mβ)(w
−1(Pα) ∩ Uβ)

= (w−1(Pα) ∩N)(w−1(Pα) ∩ V ).

Analogously for w−1(M), w−1(U).

(c) For i1 < n, i2 = n, the argument is analogous to (b).
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(d) Let i1 = i2 = n. For x, y ∈ SO(2n, F ), we have

[x] = [y] ⇔ PαxPβ = PαyPβ,

so elements of
[

WΩi1
\W/WΩi2

]

represent different classes. Moreover,

PαxPβ ⊆ SO(2n, F ),

PαsxPβ ⊆ O(2n, F )\SO(2n, F ),

so

[x] 6= [sx], [sx] 6= [y].

Let x, y ∈ SO(2n, F ), [sx] = [sy]. Then,

PαsxPβ = PαsyPβ ,

sPαsxPβ = sPαsyPβ.

We conclude that the elements sw, where w ∈ [WΩ̄n
\W/WΩn ] , rep-

resent all the classes of type [sx], x ∈ SO(2n, F ). Now, we get the
following set of representatives:






⋃

0≤d≤n
d−even

{

qn(d, k)
(0,0)
n,n | k = n− d

}






∪







⋃

0≤d≤n
d−odd

{

sqn(d, k)
(−1,−1)
n,n | k = n− d

}






.

Since

qn(d, k)n,n =

{

qn(d, k)
(0,0)
n,n , for d even,

sqn(d, k)
(−1,−1)
n,n , for d odd,

it follows that

{qn(d, k)n,n | 0 ≤ d ≤ min{i1, i2}, max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d}

is a set of representatives of P \ O(2n, F ) / Q.

For w ∈ [WΩn\W/WΩn ] , we know by [BZ2] that w−1(P ), w−1(M)
and w−1(U) are decomposable with respect to (N, V ), and that w(Q),
w(N) and w(V ) are decomposable with respect to (M,U).

Let w ∈ [WΩ̄n
\W/WΩn ] . Then,

(sw)−1(P ) ∩ NV = (sw)−1(Pα) ∩MβUβ = w−1sPαsw ∩MβUβ =

(since w−1(sPαs) is decomposable with respect to(Mβ , Uβ))

= (w−1sPαsw ∩Mβ)(w
−1sPαsw ∩ Uβ)

=
[

(sw)−1(P ) ∩ N
] [

(sw)−1(P ) ∩ V
]

.
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The arguments for (sw)−1(M) and (sw)−1(U) are similar. For (sw)(Q),
we have

(sw)(Q) ∩MU = (sw)(Pβ) ∩MαUα = s · (w(Pβ) ∩ sMαssUαs) · s =

(since w(Pβ) is decomposable with respect to (sMαs, sUαs))

= s · (w(Pβ) ∩ sMαs)(w(Pβ) ∩ sUαs) · s

= [(sw)(Pβ) ∩Mα] [(sw)(Pβ) ∩ Uα]

= [(sw)(Q) ∩M ] [(sw)(Q) ∩ U ] .

The arguments for (sw)(N) and (sw)(V ) are similar.
�

It can be easily verified that, in our case, the character ε from The-
orem 2.1 is equal to 1. Now, by Theorem 2.1 and Lemma 6.1, we
have

Lemma 6.2. Let i1, i2 ∈ {1, ..., n}, α = (i1), β = (i2), P = Qα =
MU, Q = Qβ = NV. Let σ be an admissible representation of M.
Then rN,G ◦ iG,M(σ) has a composition series with factors

iN,N ′ ◦ w−1 ◦ rM ′,M (σ),

where N ′ = w−1(M) ∩N, M ′ = M ∩ w(N) and w ∈ {qn(d, k)i1,i2 | 0 ≤
d ≤ min{i1, i2}, max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d}.

The following lemma describes M ′ and N ′ from Lemma 6.2.

Lemma 6.3. Let w = qn(d, k)i1,i2 , α = (i1), β = (i2). Then,

Nα ∩ w(Nβ) = Nγ ,

where γ = (k, i1 − d, i1, i1 + i2 − d − k).

Proof.
Recall from [C] (Proposition 1.3.3) that for θ, Ω ⊆ ∆ and w ∈

[Wθ\W/WΩ] we have Mθ ∩ w(MΩ) = Mθ∩w(Ω).
a) Let i1, i2 < n.
If d is even, then w ∈

[

WΩi1
\W/WΩi2

]

and we have

Nα ∩ w(Nβ) = (Mα ∪ sMα) ∩ w(Mβ ∪ sMβ) = (Mα ∩ w(Mβ)) ∪ (sMα ∩ w(sMβ)).

If i1 + i2 − d − k < n, then s and w commute, so

Nα ∩ w(Nβ) = (Mα ∩ w(Mβ)) ∪ s · (Mα ∩ w(Mβ)) = Mγ ∪ sMγ = Nγ.

If i1 + i2 − d− k = n, then by the proof of Lemma 6.1 we have sMα ∩
w(sMβ) = ∅, so

Nα ∩ w(Nβ) = Mγ .
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Since γ = (k, i1 − d, i1, i1 + i2 − d− k = n), it follows that Mγ = Nγ .
If d is odd, then w = w′s, where w′ ∈

[

WΩi1
\W/WΩi2

]

, w′ =

qn(d, k)
(0,0)
i1,i2

, for i1 + i2 − d − k < n, and w′ = qn(d, k)
(1,0)
i1,i2

, for i1 +
i2 − d − k = n. Since i2 < n, we have w(Mβ) = w′s(Mβ) = w′(Mβ), so
the argument is the same.

b) Let i1 = n, i2 < n.
If d is even, then w ∈

[

WΩi1
\W/WΩi2

]

, so

Nα ∩ w(Nβ) = Mα ∩ w(Mβ ∪ sMβ) = Mα ∩ w(Mβ) = Mγ.

Since γ = (k, n− d, n), we have Mγ = Nγ.
If d is odd, then the proof is same, since w = w′s, where w′ ∈

[

WΩi1
\W/WΩi2

]

and w(Mβ) = w′s(Mβ) = w′(Mβ).
c) Let i1 < n, i2 = n.
If d is even, then w ∈

[

WΩi1
\W/WΩi2

]

, and

Nα ∩ w(Nβ) = (Mα ∪ sMα) ∩ w(Mβ) = Mα ∩ w(Mβ) = Mγ = Nγ,

because i1 + i2 − d− k = n.
If d is odd, then w = sw′, w′ = qn(d, k)

(0,1)
i1,i2

. Now, we have

Nα ∩ w(Nβ) = Mα ∩ w(Mβ) = MΩi1
∩ (sw′)(MΩi2

) = s(s(MΩi1
) ∩ w′(MΩi2

)) =

= s(MΩi1
∩ w′(MΩi2

)) = s(MΩi1∩w
′(Ωi2)) = s(MΩk∩Ωi1−d∩Ωi1∩Ω̄n

) =

= MΩk∩Ωi1−d∩Ωi1∩Ωn = Mγ = Nγ .

d) Let i1 = i2 = n.
If d is even, then w ∈

[

WΩi1
\W/WΩi2

]

, and

Nα ∩ w(Nβ) = Mα ∩ w(Mβ) = Mγ = Nγ.

If d is odd, then w = sw′, w′ = qn(d, k)
(−1,−1)
i1,i2

. Now, we have

Nα ∩ w(Nβ) = Mα ∩ w(Mβ) = s(s(Mα) ∩ w
′(Mβ)) =

= s(MΩ̄n
∩ w′(MΩn)) = s(MΩk∩Ωn−d∩Ω̄n

) =

= MΩk∩Ωn−d∩Ωn = Nγ.

�

We now do the same construction for even orthogonal groups that
we did for SO(2n, F ).

Let σ be an admissible representation of O(2n, F ), π an admissible
representation of GL(m,F ). Then, π⊗σ is a representation of N(m)

∼=
GL(m,F )× O(2n, F ). Set

π ⋊ σ = iN(m),G(π ⊗ σ),
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where G = O(2(m + n), F ). Note that here we use the notation we
introduced at the beginning of this section, so iN(m),G would be iV(m),1

if we used the notation from[BZ2].

Proposition 6.4. Let π, π1 and π2 be admissible representations of
the groups GL(n, F ), GL(n1, F ) and GL(n2, F ), respectively. Let σ
be an admissible representation of O(2m,F ). Then, π1 ⋊ (π2 ⋊ σ) ∼=
(π1 × π2) ⋊ σ and (π ⋊ σ)∼ ∼= π̃ ⋊ σ̃.

Proof. The proof is same as in the case of SO(2m,F ), but here we
use Proposition 1.9. from [BZ2]. ✷

Let

R(O) =
⊕

n≥0

Rn(O),

where Rn(O) denotes the Grothendieck group of the category of all
finite length smooth representations of O(2n, F ). We shall define the
structure of an R-module on R(O). First, for irreducible smooth rep-
resentations π ∈ R and σ ∈ R(O), we put

π ⋊ σ = s.s.(π⋊ σ).

Now, we extend ⋊ Z-bilinearly to R × R(O). The action ⋊ induces a
Z-linear mapping µ : R ⊗ R(O) → R(O), which satisfies µ(π ⊗ σ) =
s.s.(π⋊ σ) for π ∈ R, σ ∈ R(O).

An argument analogous to that for R(S) gives

Proposition 6.5. (R(O), µ) is a Z+-graded module over R.

We can also achieve an R-comodule structure on R(O). For that
purpose, we shall use the Jacquet module. Let σ be a smooth finite
length representation of O(2n, F ). At the beginning of this section, we
defined subgroups Qα of O(2n, F ), where α = (n1, ..., nk) is an ordered
partition of a non-negative integer m ≤ n. We have Qα = NαUα, where

Nα
∼= GL(n1, F )× · · · ×GL(nk, F )× O(2(n −m), F ).

Define

sα,(0)(σ) = rNα,O(2n,F )(σ).

(Again, this is the notation from the beginning of this section.) sα,(0)(σ)
is a representation of Nα, so we may consider s.s.(sα,(0)(σ)) ∈ Rn1 ⊗ · ·
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·⊗Rnk
⊗Rn−m(O). For an irreducible smooth representation σ ∈ R(O),

we define

µ∗(σ) =
n
∑

k=0

s.s.(s(k),(0)(σ)).

We have µ∗(σ) ∈ R ⊗ R(O). Now, we extend µ∗
Z-linearly to µ∗ :

R(O) → R ⊗ R(O).

Proposition 6.6. (R(O), µ∗) is a Z+-graded comodule over R.

7. Jacquet modules of induced representations for

O(2n, F )

Lemma 6.2 is the geometric lemma for O(2n, F ). If we compare it
with the calculations Tadić made in [T1] for Sp(n, F ), we see that the
geometric lemma is exactly the same for those two groups. Now, we
can use the further calculations from [T1] to obtain the formula for
µ∗(π ⋊ σ).

Let us fix a positive integer n and take i1 ∈ {1, ..., n}. Let π be an
admissible representation of GL(i1, F ) and σ an admissible represen-
tation of O(2(n − i1), F ).

For i2 ∈ {1, ..., n}, let d and k be an integers which satisfy 0 ≤ d ≤
min{i1, i2}, max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2}.

For w = qn(d, k)i1,i2 , we have

w(diag(g1, g2, g3, g4, h,
τg−1

4 , τg−1
3 , τg−1

2 , τg−1
1 ))w−1 =

= diag(g1, g4,
τg−1

3 , g2, h,
τg−1

2 , g3,
τg−1

4 , τg−1
1 ),

where g1 ∈ GL(k, F ), g2 ∈ GL(i2 − d − k, F ), g3 ∈ GL(d, F ), g4 ∈
GL(i1 − d− k, F ) and h ∈ O(2(n − i1 − i2 + d+ k), F ).

Lemma 7.1. Let

s.s.(r(k,i1−d−k,d)(i1)(π)) =
∑

i

π
(1)
i ⊗ π

(2)
i ⊗ π

(3)
i ,

s.s.(s(i2−d−k)(0)(σ)) =
∑

j

π
(4)
j ⊗ σj.

Let P = Q(i1) = MU, Q = Q(i2) = NV and w = qn(d, k)i1,i2 . Then,
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s.s.(iN,w−1(M )∩N ◦ w−1 ◦ rM∩w(N),M (π ⊗ σ)) =

=
∑

i

∑

j

π
(1)
i × π

(4)
j × π̃

(3)
i ⊗ π

(2)
i ⋊ σj

=
∑

i

∑

j

π
(1)
i × π̃

(3)
i × π

(4)
j ⊗ π

(2)
i ⋊ σj

=
∑

i

∑

j

π̃
(3)
i × π

(1)
i × π

(4)
j ⊗ π

(2)
i ⋊ σj.

Proof. By Lemma 6.3, we have

N(i1) ∩ w(N(i2)) = N(k,i1−d,i1,i1+i2−d−k) .

It follows that

s.s.(rM∩w(N),M (π ⊗ σ)) =

(

∑

i

π
(1)
i ⊗ π

(2)
i ⊗ π

(3)
i

)

⊗

(

∑

j

π
(4)
j ⊗ σj

)

.

The above calculation gives w−1(π1 ⊗ π2 ⊗ π3 ⊗ π4 ⊗ σ) = π1 ⊗ π4 ⊗
π̃3 ⊗ π2 ⊗ σ. Since

w−1(N(i1)) ∩N(i2) = N(k,i2−d,i2,i1+i2−d−k),

we have
s.s.(iN,w−1(M )∩N ◦ w−1 ◦ rM∩w(N),M (π ⊗ σ)) =

=
∑

i

∑

j

π
(1)
i × π

(4)
j × π̃

(3)
i ⊗ π

(2)
i ⋊ σj.

Now, we use the commutativity of R to obtain the other equalities. �

Define a Z-bilinear mapping ⋊̃ : (R⊗R⊗R)×(R⊗R(O)) → R⊗R(O)
by defining

(π1 ⊗ π2 ⊗ π3)⋊̃(π4 ⊗ σ) = π̃1 × π2 × π4 ⊗ π3 ⋊ σ

for irreducible smooth representations πi of GL(ni, F ), i = 1, 2, 3, 4,
and an irreducible smooth representation σ of O(2m,F ). Denote by s
the homomorphism s : R⊗R→ R⊗R which satisfies s(r1⊗r2) = r2⊗r1,
r1, r2 ∈ R.

The proof of the following theorem uses calculations from [T1].

Theorem 7.2. Let π be an admissible finite length representation of
GL(i1, F ) and σ an admissible finite length representation of O(2(n −
i1), F ) . Set

m
∗ = (1 ⊗m∗) ◦ s ◦m∗.
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Then,

µ∗(π ⋊ σ) = m
∗(π)⋊̃µ∗(σ).

Proof. From [T1], we have

m
∗(π) =

i1
∑

l=0











∑

q,r
0≤q≤i1, 0≤r≤q

i1−q+r=l





jq
∑

j=1

ur(j,q)
∑

u=1

β
(i1−q)
j ⊗

(

γ
(q)
j

)(r)

u
⊗
(

δ
(q)
j

)(q−r)

u















,

µ∗(σ) =
n−i1
∑

p=0

(

νp
∑

ν=1

τ (p)
ν ⊗ σ(n−i1−p)

ν

)

,

m
∗(π)⋊̃µ∗(σ) =

n
∑

i2=0













∑

l,p
0≤l≤i1, 0≤p≤n−i1

l+p=i2

∑

q,r
0≤q≤i1, 0≤r≤q

i1−q+r=l

jq
∑

j=1

ur(j,q)
∑

u=1

νp
∑

ν=1

(

β
(i1−q)
j

)∼

×
(

γ
(q)
j

)(r)

u
× τ (p)

ν ⊗
(

δ
(q)
j

)(q−r)

u
⋊ σ(n−i1−p)

ν

)

.

It is shown in [T1] that

(1)

m
∗(π)⋊̃µ∗(σ) =

n
∑

i2=0





min{i1,i2}
∑

d=0

min{i1,i2}−d
∑

k=max{0,(i1+i2−n)−d}

ji1−d
∑

j=1

uk(j,i1−d)
∑

u=1

νi2−d−k
∑

ν=1

(

β
(d)
j

)∼

×
(

γ
(i1−d)
j

)(k)

u
× τ (i2−d−k)

ν ⊗
(

δ
(i1−d)
j

)(i1−d−k)

u
⋊ σ(n−i1−i2+d+k)

ν

)

On the other hand, we have

µ∗(π ⋊ σ) =
n
∑

i2=0

s.s.(s(i2),(0)(π ⋊ σ)).

Let i2 ∈ {1, . . . , n}. Then



40 DUBRAVKA BAN

s.s.(s(i2),(0)(π ⋊ σ)) = (by Lemma 6.2) =

=

min{i1,i2}
∑

d=0

min{i1,i2}−d
∑

k=max{0,(i1+i2−n)−d}
w=qn(d,k)i1,i2

s.s.(iN(i2) ,w−1(N(i1))∩N(i2)
◦ w−1

◦ rN(i1)∩w(N(i2)),N(i1)
(π ⊗ σ))

As in [T1], for d and k fixed, we have

s.s.(r(k,i1−d−k,d),(i1)(π) =

ji1−d
∑

j=1

uk(j,i1−d)
∑

u=1

(

γ
(i1−d)
j

)(k)

u
⊗
(

δ
(i1−d)
j

)(i1−d−k)

u
⊗ β

(d)
j ,

s.s.(s(i2−d−k),(0)(σ)) =

νi2−d−k
∑

ν=1

τ (i2−d−k)
ν ⊗ σ(n−i1−i2+d+k)

ν .

Now, it follows from Lemma 7.1 that

s.s.(s(i2),(0)(π ⋊ σ)) =

min{i1,i2}
∑

d=0

min{i1,i2}−d
∑

k=max{0,(i1+i2−n)−d}

ji1−d
∑

j=1

uk(j,i1−d)
∑

u=1

νi2−d−k
∑

ν=1

(

β
(d)
j

)∼

×
(

γ
(i1−d)
j

)(k)

u
× τ (i2−d−k)

ν ⊗
(

δ
(i1−d)
j

)(i1−d−k)

u
⋊ σ(n−i1−i2+d+k)

ν .

If i2 = 0, then

s(i2),(0)(π ⋊ σ) = 1 ⊗ π ⋊ σ.

It follows
µ∗(π ⋊ σ) =

=
n
∑

i2=0

s.s.(s(i2),(0)(π ⋊ σ))

=
n
∑

i2=0





min{i1,i2}
∑

d=0

min{i1,i2}−d
∑

k=max{0,(i1+i2−n)−d}

ji1−d
∑

j=1

uk(j,i1−d)
∑

u=1

νi2−d−k
∑

ν=1

(

β
(d)
j

)∼

×
(

γ
(i1−d)
j

)(k)

u
× τ (i2−d−k)

ν ⊗
(

δ
(i1−d)
j

)(i1−d−k)

u
⋊ σ(n−i1−i2+d+k)

ν

)

.

Now, the above equality and (1) give the theorem. ✷

For r1 ⊗ r2 ∈ R ⊗ R and r ⊗ s ∈ R ⊗ R(O), set

(r1 ⊗ r2) ⋊ (r ⊗ s) = (r1 × r) ⊗ (r2 ⋊ s).
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Extend ⋊ Z-bilinearly to ⋊ : (R⊗R) × (R⊗R(O)) → R⊗R(O). Set

M∗ = (m⊗ 1) ◦ (∼ ⊗ m∗) ◦ s ◦m∗.

Theorem 7.2 now becomes

Theorem 7.3. For admissible finite length representations π of GL(i1, F )
and σ of O(2(n − i1), F ), we have

µ∗(π ⋊ σ) = M∗(π) ⋊ µ∗(σ).
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