MASTER SYLLABUS

COURSE NUMBER AND TITLE:

RAD 400-3 Radiation Dosimetry and Instrumentation

COURSE DESCRIPTION:

Includes a study of the principles of radiation dosimetry and related calculations. Topics include calibration, protection, dose determination to points of interest, and basic treatment planning.

COURSE OBJECTIVES:

- 1. Demonstrate an understanding of the treatment prescription.
- 2. Demonstrate an understanding of the geometric parameters and patient measurements.
- 3. Demonstrate an understanding of the factors used in dose calculations.
- 4. Perform electron and photon dose calculations.
- 5. Demonstrate an understanding of basic treatment planning.
- 6. Demonstrate an understanding of heterogeneity calculations.
- 7. Demonstrate an understanding of special procedures within radiation oncology.

COURSE OUTLINE:

PERCENTAGE:

		Incontinue
1.	Nomenclature.	5%
2.	Dose calculation parameters.	20%
3.	Practical calculation methods.	20%
4.	Gap calculations.	5%
5.	Irregular field calculations.	5%
6.	Beam modifiers.	12.5%
7.	Isodose distributions and factors that affect isodose distributions.	15%
8.	Electron beam parameters and dosimetry.	12.5%
9.	Special procedures	5%

MEANS OF STUDENT EVALUATION:

Grading Scale

93 -	100	=	А
85 -	92	=	В
77 -	84	=	С
70 -	76	=	D
0 -	69	=	F

PREREQUISITES: Instructor approval.

TEXTBOOKS:

- McDermott, P. N. (2010). <u>The Physics and Technology of Radiation Therapy</u> (1st ed.). Madison, Wisconsin: Medical Physics Publishing.
- Washington, C. M., & Leaver, D. T. (2010). <u>Principles and Practices of Radiation Therapy</u> (3rd ed). St. Louis, MO: Mosby.